Abstract

This paper presents an adaptive, needle variation-based feedback scheme for controlling affine nonlinear systems with unknown parameters that appear linearly in the dynamics. The proposed approach combines an online parameter identifier with a second-order sequential action controller that has shown great promise for nonlinear, underactuated, and high-dimensional constrained systems. Simulation results on the dynamics of an underwater glider and robotic fish show the advantages of introducing online parameter estimation to the controller when the model parameters deviate from their true values or are completely unknown.

This content is only available via PDF.
You do not currently have access to this content.