Schoch,
R. B.
,
Han,
J.
, and
Renaud,
P.
, 2008, “
Transport Phenomena in Nanofluids,” Rev. Mod. Phys.,
80(3), p. 839.

[CrossRef]
Godson,
L. B.
,
Raja,
D.
,
Lal,
M.
, and
Wongwises,
S.
, 2010, “
Enhancement of Heat Transfer Using Nanofluids-An Overview,” Renewable Sustainable Energy Rev.,
14(2), pp. 629–641.

[CrossRef]
Efstathios,
E.
, and
Michaelides,
S.
, 2014, Nanofluidics- Thermodynamic and Transport Properties,
Springer International Publishing,
Cham, Switzerland.

Vadasz,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions,” ASME J. Heat Transfer,
128(5), pp. 465–477.

[CrossRef]
Torabi,
M.
,
Dickson,
C.
, and
Karimi,
N.
, 2016, “
Theoretical Investigation of Entropy Generation and Heat Transfer by Forced Convection of Copper-Water Nanofluid in a Porous Channel-Local Thermal Non-Equilibrium and Partial Filling Effects,” J. Powder Tech.,
301, pp. 234–254.

[CrossRef]
Dickson,
C.
,
Torabi,
M.
, and
Karimi,
N.
, 2016, “
First and Second Law Analysis of Nanofluid Convection Through a Porous Channel-The Effects of Partial Filling and Internal Heat Sources,” J. Appl. Therm. Eng.,
103, pp. 459–480.

[CrossRef]
Torabi,
M.
,
Zhang,
K.
,
Karimi,
N.
, and
Peterson,
G. P.
, 2016, “
Entropy Generation in Thermal Systems With Solid Structures-a Concise Review,” Int. J. Heat Mass Transfer,
97, pp. 917–931.

[CrossRef]
Mahian,
O.
,
Kainifar,
A.
,
Kalogirou,
S. A.
,
Pop,
I.
, and
Wongwises,
S.
, 2013, “
A Review of the Applications of Nanofluids in Solar Energy,” Int. J. Heat Mass Transfer,
57(2), pp. 582–594.

[CrossRef]
Lomascolo,
M.
,
Colangelo,
G.
,
Milanese,
M.
, and
De Risi,
A.
, 2015, “
Review of Heat Transfer in Nanofluids: Conductive, Convective and Radiative Experimental Results,” Renewable Sustainable Energy Rev.,
43, pp. 1182–1198.

[CrossRef]
Ebrahimi,
K.
,
Jones,
G. F.
, and
Fleischer,
A. S.
, 2014, “
A Review of Data Center Cooling Technology, Operating Conditions and the Corresponding Low-Grade Waste Heat Recovery Opportunities,” J. Renewable Sustainable Energy Rev.,
31, pp. 622–638.

[CrossRef]
Ghasemi,
B.
, and
Aminossadati,
S. M.
, 2010, “
Brownian Motion of Nanoparticles in a Triangular Enclosure With Natural Convection,” Int. J. Therm. Sci.,
49(6), pp. 931–940.

[CrossRef]
Khanafer,
K.
,
Vafai,
K.
, and
Lightstone,
M.
, 2003, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” Int. J. Heat Mass Transfer,
46(19), pp. 3639–3653.

[CrossRef]
Kefayati,
G. H. R.
,
Hosseinizadeh,
S. F.
,
Gorji,
M.
, and
Sajjadi,
H.
, 2011, “
Lattice Boltzmann Simulation of Natural Convection in Tall Enclosures Using Water/SiO

_{2} Nanofluid,” Int. Commun. Heat Mass Transfer,
38(6), pp. 798–805.

[CrossRef]
Lai,
F.
, and
Yang,
H. Y.
, 2011, “
Lattice Boltzmann Simulation of Natural Convection Heat Transfer of Al

_{2}O

_{3}/Water Nanofluids in a Square Enclosure,” Int. J. Therm. Sci.,
50(10), pp. 1930–1941.

[CrossRef]
Mahmoudi,
A. H.
,
Shahi,
M.
,
Raouf,
A. H.
, and
Ghasemian,
A.
, 2010, “
Numerical Study of Natural Convection Cooling of Horizontal Heat Source Mounted in a Square Cavity Filled With Nanofluid,” Int. Commun. Heat Mass Transfer,
37(8), pp. 1135–1141.

[CrossRef]
Chandrasekhar,
S.
, 2013, Hydrodynamic and Hydromagnetic Stability,
Courier Corporation, Chelmsford, MA.

Hamad,
M. A. A.
,
Pop,
I.
, and
Ismail,
A. I. M.
, 2011, “
Magnetic Field Effects on Free Convection Flow of a Nanofluid past a Vertical Semi-Infinite Flat Plate,” Nonlinear Anal.: Real World Appl.,
12(3), pp. 1338–1346.

[CrossRef]
Gavili,
A.
,
Zabihi,
F.
,
Isfahani,
T. D.
, and
Sabbaghzadeh,
J.
, 2012, “
The Thermal Conductivity of Water Base Ferrofluids Under Magnetic Field,” Exp. Therm. Fluid Sci.,
41, pp. 94–98.

[CrossRef]
Hayat,
T.
,
Waqas,
M.
,
Shehzad,
S. A.
, and
Alsaedi,
A.
, 2016, “
A Model of Solar Radiation and Joule Heating in Magnetohydrodynamic (MHD) Convective Flow of Thixotropic Nanofluid,” J. Mol. Liq.,
215, pp. 704–710.

[CrossRef]
Guerrero Martinez,
F.
,
Younger,
P.
,
Karimi,
N.
, and
Kyriakis,
S.
, 2017, “
Three-Dimensional Numerical Simulations of Free Convection in a Layered Porous Enclosure,” Int. J. Heat Mass Transfer,
106, pp. 1005–1013.

[CrossRef]
Mahmoudi, H. A.
,
Pop, L.
, and
Shahi, M.
, 2012, “
Effect of Magnetic Field on Natural Convection in a Triangular Eclosure Flled with Nanofluid,” Int. J. Thermal Sci.,
59, pp. 126–140.

Rohsenow,
W. M.
,
Hartnett,
J. P.
, and
Cho,
Y. I.
, 1998, Handbook of Heat Transfer, 3rd ed.,
McGraw-Hill,
New York.

Kefayati,
G. H. R.
, 2013, “
Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-Filled Cavity With Sinusoidal Temperature Distribution,” Powder Technol.,
243, pp. 171–183.

[CrossRef]
Kefayati,
G. H. R.
, 2015, “
FDLBM Simulation of Entropy Generation Due to Natural Convection in an Enclosure Filled With non-Newtonian Nanofluid,” Powder Technol.,
273, pp. 176–190.

[CrossRef]
Kefayati,
G. H. R.
, 2015, “
FDLBM Simulation of Mixed Convection in a Lid-Driven Cavity Filled With Non-Newtonian Nanofluid in the Presence of Magnetic Field,” Int. J. Therm. Sci.,
95, pp. 29–46.

[CrossRef]
Sheikholeslami,
M.
, and
Ganji,
D. D.
, 2016, “
Nanofluid Convective Heat Transfer Using Semi Analytical and Numerical Approaches: A Review,” J. Taiwan Inst. Chem. Eng.,
65, pp. 43–77.

[CrossRef]
Sanokawa,
K.
, 1979, “
Natural Confection of Mercury in a Magnetic Field Parallel to the. Gravity,” ASME J. Heat Transfer,
101(2), pp. 227–232.

[CrossRef]
Ozoe,
H.
, and
Okada,
K.
, 1989, “
The Effect of the Direction of the External Magnetic Field on the Three-Dimensional Natural Convection in a Cubical Enclosure,” Int. J. Heat Mass Transfer,
32(10), pp. 1939–1954.

[CrossRef]
Rudraiah,
N.
, 1995, “
Effect of a Magnetic Field on Free Convection in a Rectangular Enclosure,” Int. J. Eng. Sci.,
33(8), pp. 1075–1084.

[CrossRef]
Pirmohammadi,
M.
,
Ghassemi,
M.
, and
Hamedi,
M.
, 2010, “
Effect of Inclination Angle on Magneto-Convection Inside a Tilted Enclosure,” IEEE Trans. Magn.,
46(6), pp. 2489–2492.

[CrossRef]
Chamkha,
A. J.
, 2002, “
Hydromagnetic Combined Convection Flow in a Vertical Lid-Driven Cavity With Internal Heat Generation or Absorption,” Numer. Heat Transfer-Part A: Appl.,
41(5), pp. 529–546.

[CrossRef]
Guerrero Martinez,
F.
,
Younger,
P.
, and
Karimi,
N.
, 2016, “
Three-Dimensional Numerical Model of Free Convection in Sloping Porous Enclosures,” Int. J. Heat Mass Transfer,
98, pp. 257–267.

[CrossRef]
Sheikholeslami,
M.
,
Gorji-Bandpy,
M.
,
Ganji,
D. D.
, and
Soleimani,
S.
, 2014, “
Natural Convection Heat Transfer in a Cavity With Sinusoidal Wall Filled With CuO–Water Nanofluid in Presence of Magnetic Field,” J. Taiwan Inst. Chem. Eng.,
45(1), pp. 40–49.

[CrossRef]
Ghasemi,
B.
,
Aminossadati,
S. M.
, and
Raisi,
A.
, 2011, “
Magnetic Field Effect on Natural Convection in Nanofluid- Filled Square Enclosure,” Int. J. Therm. Sci.,
50(9), pp. 1748–1756.

[CrossRef]
Sheikholeslami,
M.
,
Gorji-Bandpy,
M.
,
Ganji,
D. D.
, and
Soleimani,
S.
, 2014, “
MHD Natural Convection in a Nanofluid Filled Inclined Enclosure With Sinusoidal Wall Using CVFEM,” Neural Comput. Appl.,
24(3–4), pp. 873–882.

[CrossRef]
Alizadeh,
R.
,
Karimi,
N.
,
Arjmandzadeh,
R.
, and
Mehdizadeh,
A.
, 2018, “
Mixed Convection and Thermodynamic Irreversibilities in MHD Nanofluid Stagnation-Point Flows Over a Cylinder Embedded in Porous Media,” J. Therm. Anal. Calorim., (epub).

Turkyilmazoglu,
M.
, 2016, “
Performance of Direct Absorption Solar Collector With Nanofluid Mixture,” Energy Convers. Manage.,
114, pp. 1–10.

[CrossRef]
Turkyilmazoglu,
M.
, 2017, “
Condensation of Laminar Film Over Curved Vertical Walls Using Single and Two-Phase Nanofluid Models,” Eur. J. Mech.-B/Fluids,
65, pp. 184–191.

[CrossRef]
Turkyilmazoglu,
M.
, 2017, “
Magnetohydrodynamic Two-Phase Dusty Fluid Flow and Heat Model Over Deforming Isothermal Surfaces,” Phys. Fluids,
29(1), p. 013302.

[CrossRef]
Cortell,
R.
, 2005, “
A Note on Magnetohydrodynamic Flow of a Power-Law Fluid Over a Stretching Sheet,” Appl. Math. Comput.,
168(1), pp. 557–566.

Fang,
T.
,
Zhang,
J.
, and
Yao,
S.
, 2009, “
Slip MHD Viscous Flow Over a Stretching Sheet–an Exact Solution,” Commun. Nonlinear Sci. Numer. Simul.,
14(11), pp. 3731–3737.

[CrossRef]
Bejan,
A.
, 1979, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer,” ASME J. Heat Transfer,
101(4), pp. 718–725.

[CrossRef]
Bejan,
A.
, 1982, Entropy Generation Through Heat and Fluid Flow,
Wiley,
New York.

Bejan,
A.
, 1996, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes,
CRC Press,
Boca Raton, FL.

Hajialigal,
N.
,
Fattahi,
A.
,
Ahmadi,
M. H.
,
Qomi,
M. E.
, and
Kakoli,
E.
, 2015, “
MHD Mixed Convection and Entropy Generation in a 3D Microchannel Using Al

_{2}O

_{3}-Water Nanouid,” Taiwan Inst. Chem. Eng.,
46, pp. 30–42.

[CrossRef]
Mehrez,
Z.
,
Cafsi,
A. E.
,
Belghith,
A.
, and
Quere,
P. L.
, 2015, “
MHD Effects on Heat Transfer and Entropy Generation of Nanofluid Flow in an Open Cavity,” J. Magn. Magn. Mater.,
374, pp. 214–224.

[CrossRef]
Kefayati,
G. H. R.
, and
Che Sidik,
N. A.
, 2017, “
Simulation of Natural Convection and Entropy Generation of Non-Newtonian Nanofluid in an Inclined Cavity Using Buongiorno's Mathematical Model (Part II, Entropy Generation),” Powder Technol.,
305, pp. 679–703.

[CrossRef]
Fersadou,
I.
,
Kahalerras,
H.
, and
Ganaoui,
M. E.
, 2015, “
MHD Mixed Convection and Entropy Generation of a Nanofluid in a Vertical Porous Channel,” Comp. Fluids,
121, pp. 164–179.

[CrossRef]
Sheremet,
M. A.
,
Pop,
I.
, and
Rahman,
M. M.
, 2015, “
Three-Dimensional Natural Convection in a Porous Enclosure Filled With a Nanofluid Using Buongiorno's Mathematical Model,” Int. J. Heat Mass Transfer,
82, pp. 396–405.

[CrossRef]
Ashorynejad,
H. R.
,
Mohamad,
A. A.
, and
Sheikholeslami,
M.
, 2013, “
Magnetic Field Effects on Natural Convection Flow of a Nanofluid in a Horizontal Cylindrical Annulus Using Lattice Boltzmann Method,” Int. J. Therm. Sci.,
64, pp. 240–250.

[CrossRef]
Alizadeh,
R.
,
Rahimi,
A. B.
,
Karimi,
N.
, and
Alizadeh,
A.
, 2018, “
Transient Analysis of the Interactions Between a Heat Transferring, Radial Stagnation Flow and a Rotating cylinder-Magnetohydrodynamic and Non-Uniform Transpiration Effects,” ASME J. Therm. Sci. Eng. Appl.,
10(5), p. 051017.

[CrossRef]
Guerrero Martinez,
F.
,
Karimi,
N.
, and
Ramos,
E.
, 2018, “
Numerical Modeling of Multiple Steady-State Convective Modes in Tilted Porous Medium Heated From below,” Int. Commun. Heat Mass Transfer,
92, pp. 64–72.

[CrossRef]
Bouchoucha,
A. M.
,
Bessaïh,
R.
,
Oztop,
H. F.
,
Al-Salem,
K.
, and
Bayrak,
F.
, 2017, “
Natural Convection and Entropy Generation in a Nanofluid Filled Cavity With Thick Bottom Wall: Effects of Non-Isothermal Heating,” Int. J. Mech. Sci.,
26(C), pp. 95–105.

Aybar,
H. S.
,
Sharifpur,
M.
,
Azizian,
R.
,
Mehrabi,
M.
, and
Meyer,
J. P.
, 2015, “
A Review of Thermal Conductivity Models for Nanofluids,” J. Heat Transfer Eng.,
36(13), pp. 1085–1110.

[CrossRef]
Koo,
J.
, and
Kleinstreuer,
C.
, 2005, “
Laminar Nanofluid in Microheat-Sinks,” Int. J. Heat Mass Transfer,
48(13), pp. 2652–2661.

[CrossRef]
Brinkman,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solution,” Chem. Phys.,
20(4), pp. 571–581.

Koo,
J.
, and
Kleinstreuer,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids,” J. Nanopart. Res.,
6(6), pp. 577–588.

[CrossRef]
Maxwell,
J.
, 1904, A Treatise on Electricity and Magnetism, 2nd ed,
Oxford University Press,
Cambridge, UK.

Patankar,
S. V.
, 1980, Numerical Heat Transfer and Fluid Flow,
Hemisphere,
Washington, DC.

Davis,
G. D. V.
, 1983, “
Natural Convection of Air in a Square Cavity, a Benchmark Numerical Solution,” Int. J. Numer. Meth. Fluid,
3(3), pp. 249–264.

[CrossRef]
Oztop,
H. F.
, and
Abu-Nada,
E.
, 2008, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids,” Int. J. Heat Fluid Flow,
29(5), pp. 1326–1336.

[CrossRef]Pirmohammadi,
M.
, and
Ghassemi,
M.
, 2009, “
Effect of Magnetic Field on Convection Heat Transfer Inside a Tilted Square Enclosure,” Int. Commun. Heat Mass Transfer,
36(7), pp. 776–780.

[CrossRef]