Heat Transfer Analysis of the Surface of Nozzle Guide Vane in Transonic Annular Cascade

[+] Author and Article Information
Kasem Ragab

The American University in Cairo, New Cairo, Cairo, 11835, Egypt

Dr. Lamyaa El-Gabry

The American University in Cairo, New Cairo, Cairo, 11835, Egypt

1Corresponding author.

ASME doi:10.1115/1.4041266 History: Received July 23, 2017; Revised July 17, 2018


One of the approaches adopted to improve turbine efficiency and increase power to weight ratio is reducing vane count. In the current study, numerical analysis was performed for the heat transfer over the surface of nozzle guide vanes under the condition of reduced vane count using three dimensional computational fluid dynamics (CFD) models. The investigation has taken place in two stages: the baseline nonfilm-cooled nozzle guide vane, and the film-cooled nozzle guide vane. A finite volume based commercial code was used to build and analyze the CFD models. The investigated annular cascade has no heat transfer measurements available; hence in order to validate the CFD models against experimental data, two standalone studies were carried out on the NASA C3X vanes, one on the nonfilm-cooled C3X vane and the other on the film-cooled C3X vane. Different modelling parameters were investigated including turbulence models in order to obtain good agreement with the C3X experimental data, the same parameters were used afterwards to model the industrial nozzle guide vanes.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In