Research Papers

Adaptive Thermal Conductivity Metamaterials: Enabling Active and Passive Thermal Control

[+] Author and Article Information
Austin A. Phoenix

U.S. Naval Research Laboratory,
4555 Overlook Avenue,
Washington, DC 20375
e-mail: Austin.Phoenix@nrl.navy.mil

Evan Wilson

U.S. Naval Research Laboratory,
4555 Overlook Avenue,
Washington, DC 20375
e-mail: Donald.Wilson@nrl.navy.mil

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received October 28, 2017; final manuscript received April 16, 2018; published online June 14, 2018. Assoc. Editor: Steve Q. Cai. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited.

J. Thermal Sci. Eng. Appl 10(5), 051020 (Jun 14, 2018) (9 pages) Paper No: TSEA-17-1418; doi: 10.1115/1.4040280 History: Received October 28, 2017; Revised April 16, 2018

The novel adaptive thermal metamaterial developed in this paper provides a unique thermal management capability that can address the needs of future spacecraft. While advances in metamaterials have provided the ability to generate materials with a broad range of material properties, relatively little advancement has been made in the development of adaptive metamaterials. This metamaterial concept enables the development of materials with a highly nonlinear thermal conductivity as a function of temperature. Through enabling active or passive control of the metamaterials bulk effective thermal conductivity, this metamaterial that can improve the spacecraft's thermal management systems performance. This variable thermal conductivity is achieved through induced contact that results in changes in the F path length and the conductive path area. The contact can be generated internally using thermal strain from shape memory alloys, bimetal springs, and mismatches in coefficient of thermal expansion (CTE) or it can be generated externally using applied mechanical loading. The metamaterial can actively control the temperature of an interface by dynamically changing the bulk thermal conductivity controlling the instantaneous heat flux through the metamaterial. The design of thermal stability regions (regions of constant thermal conductivity versus temperature) into the nonlinear thermal conductivity as a function of temperature can provide passive thermal control. While this concept can be used in a wide range of applications, this paper focuses on the development of a metamaterial that achieves highly nonlinear thermal conductivity as a function of temperature to enable passive thermal control of spacecraft systems on orbit.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Phoenix, A. A. , and Wilson, E. , 2017, “ Variable Thermal Conductance Metamaterials for Passive or Active Thermal Management,” ASME Paper No. SMASIS2017-3767.
Chiritescu, C. , Cahill, D. G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., and Zschack, P., 2007, “ Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals,” Science, 315(5810), pp. 351–353. [CrossRef] [PubMed]
Han, T. , Bai, X., Liu, D., Gao, D., Li, B., Thong, J. T. L., and Qiu, C.-W., 2015, “ Manipulating Steady Heat Conduction by Sensu-Shaped Thermal Metamaterials,” Sci. Rep., 5, p. 10242. [CrossRef] [PubMed]
Narayana, S. , Savo, S. , and Sato, Y. , 2013, “ Transient Heat Flux Shielding Using Thermal Metamaterials,” Appl. Phys. Lett., 102(20), p. 201904. [CrossRef]
Shen, X. Y. , Jiang, C., Li, Y., and Huang, J., 2016, “ Thermal Metamaterial for Convergent Transfer of Conductive Heat With High Efficiency,” Appl. Phys. Lett., 109(20), p. 201906. [CrossRef]
Kapadia, R. S. , 2014, “ Heat Flux Manipulation Using Thermal Meta-Materials,” Ph.D. thesis, University of California, San Diego, CA. https://escholarship.org/uc/item/0bv984qf
Chen, F. , and Lei, D. Y. , 2015, “ Experimental Realization of Extreme Heat Flux Concentration With Easy-to-Make Thermal Metamaterials,” Sci. Rep., 5(1), p. 11552. [CrossRef] [PubMed]
Yang, T. Z. , Vemuri, K. P. , and Bandaru, P. R. , 2014, “ Experimental Evidence for the Bending of Heat Flux in a Thermal Metamaterial,” Appl. Phys. Lett., 105(8), p. 083908. [CrossRef]
Hu, R. , Zhou, S., Yu, X., and Luo, X., 2016, “ Exploring the Proper Experimental Conditions in 2D Thermal Cloaking Demonstration,” J. Phys. D, 49(41), p. 415302. [CrossRef]
Vemuri, K. P. , Canbazoglu, F. M. , and Bandaru, P. R. , 2014, “ Guiding Conductive Heat Flux Through Thermal Metamaterials,” Appl. Phys. Lett., 105(19), p. 193904. [CrossRef]
Yang, T. Z. , Wu, Q., Xu, W., Liu, D., Huang, L., and Chen, F., 2016, “ A Thermal Ground Cloak,” Phys. Lett. A, 380(7–8), pp. 965–969. [CrossRef]
Fleury, R. , and Alu, A. , 2014, “ Cloaking and Invisibility: A Review (Invited Review),” Prog. Electromagn. Res., 147, pp. 171–202. [CrossRef]
Gao, Y. , and Huang, J. P. , 2013, “ Unconventional Thermal Cloak Hiding an Object Outside the Cloak,” EPL, 104(4), p. 44001. [CrossRef]
Vemuri, K. P. , and Bandaru, P. R. , 2013, “ Geometrical Considerations in the Control and Manipulation of Conductive Heat Flux in Multilayered Thermal Metamaterials,” Appl. Phys. Lett., 103(13), p. 133111. [CrossRef]
Raza, M. , Liu, Y., Lee, E. H., and Ma, Y., 2016, “ Transformation Thermodynamics and Heat Cloaking: A Review,” J. Opt., 18(4), p. 044002. [CrossRef]
Park, G. , Kang, S., Lee, H., and Choi, W., 2017, “ Tunable Multifunctional Thermal Metamaterials: Manipulation of Local Heat Flux Via Assembly of Unit-Cell Thermal Shifters,” Sci. Rep., 7, p. 41000. [CrossRef] [PubMed]
Hsieh, W. P. , Chen, B., Li, J., Keblinski, P., and Cahill, D. G., 2009, “ Pressure Tuning of the Thermal Conductivity of the Layered Muscovite Crystal,” Phys. Rev. B, 80(18), p. 180302. [CrossRef]
Ion, A. , Frohnhofen, J., Wall, J., Kovacs, R., Alistar, M., Lindsay, J., Lopes, P., Chen, H.-T., and Baudisch, P., 2016, “ Metamaterial Mechanisms,” 29th Annual Symposium on User Interface Software and Technology, pp. 529--539.
Marland, B. , Bugby, D. , and Stouffer, C. , 2004, “ Development and Testing of an Advanced Cryogenic Thermal Switch and Cryogenic Thermal Switch Test Bed,” Cryogenics, 44(6–8), pp. 413–420. [CrossRef]
Guo, L. , Zhang, X., Huang, Y., Hu, R., and Liu, C., 2017, “ Thermal Characterization of a New Differential Thermal Expansion Heat Switch for Space Optical Remote Sensor,” Appl. Therm. Eng., 113, pp. 1242–1249. [CrossRef]
Milanez, F. H. , and Mantelli, M. B. H. , 2003, “ Theoretical and Experimental Studies of a Bi-Metallic Heat Switch for Space Applications,” Int. J. Heat Mass Transfer, 46(24), pp. 4573–4586. [CrossRef]
Lesieutre, G. A. , Frecker, M., Adair, J. H., Yu, T., and Gigliotti, C. M., 2017, “ Multifunctional Thermal Structures Using Cellular Contract-Aided Complaint Mechanisms,” The Pennsylvania State University, University Park, PA.
Krishnan, V. B. , 2004, “ Design, Fabrication and Testing of a Shape Memory Alloy Based Cryogenic Thermal Conduction Switch,” Electronic theses and dissertations, University of Central Florida, Orlando, FL. http://stars.library.ucf.edu/etd/100/
Bulgrin, K. E. , Ju, Y. S., Carman, G. P., and Lavine, A. S., 2009, “ A Tunable Magnetomechanical Thermal Switch for Thermal Management Purposes,”ASME Paper No. HT2009-88571.
Jeong, S. H. , Nakayama, W. , and Lee, S. K. , 2012, “ Experimental Investigation of a Heat Switch Based on the Precise Regulation of a Liquid Bridge,” Appl. Therm. Eng., 39, pp. 151–156. [CrossRef]
Beasley, M. A. , Firebaugh, S. L., Edwards, R. L., Keeney, A. C., and Osiander, R., 2004, “ MEMS Thermal Switch for Spacecraft Thermal Control,” Proc. SPIE, 5344, pp. 98–106.
Simons, R. E., and Chu, R. C., 2000, “Application of Thermoelectric Cooling to Electronic Equipment: A Review and Analysis,” IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, Mar. 23, pp. 1–9.
Riffat, S. B. , and Ma, X. L. , 2004, “ Improving the Coefficient of Performance of Thermoelectric Cooling Systems: A Review,” Int. J. Energy Res., 28(9), pp. 753–768. [CrossRef]
Colomer, A. M. , Massaguer, E., Pujol, T., Comamala, M., Montoro, L., and González, J. R., 2015, “ Electrically Tunable Thermal Conductivity in Thermoelectric Materials: Active and Passive Control,” Appl. Energy, 154, pp. 709–717. [CrossRef]
Zhao, D. L. , and Tan, G. , 2014, “ A Review of Thermoelectric Cooling: Materials, Modeling and Applications,” Appl. Therm. Eng., 66(1–2), pp. 15–24. [CrossRef]
Twaha, S. , Zhu, J., Yan, Y., and Li, B., 2016, “ A Comprehensive Review of Thermoelectric Technology: Materials, Applications, Modelling and Performance Improvement,” Renewable Sustainable Energy Rev., 65, pp. 698–726. [CrossRef]
Vlassov, V. V. , de Sousa, F. L., Cuco, A. P. C., and Neto, A. J. S., 2010, “ New Concept of Space Radiator With Variable Emittance,” J. Braz. Soc. Mech. Sci. Eng., 32(4), pp. 400–408. [CrossRef]
Vlassov, V. V. , Cuco, A. P. C., De Sousa, F. L., and Neto, A. J. S. S., 2006, “ Design Optimization of Two-Stage Radiator With Variable Emittance: Analysis of Concept Feasibility,” 11th Brazilian Congress of Thermal Engineering and Sciences, Paper No. ENCIT2006.
Vlassov, V. V. , Panissi, D. L. , and de Sousa, F. L. , 2017, “ Analysis of Concept Feasibility and Results of Numerical Simulation of a Two-Stage Space Radiator With Variable Emissivity Coating,” Heat Transfer Eng., 38(10), pp. 963–974. [CrossRef]
Buhler, J. , Funk, J., Paul, O., Steiner, F.-P., and Baltes, H., 1995, “ Thermally Actuated CMOS Micromirrors,” Sens. Actuators, A, 47(1–3), pp. 572–575. [CrossRef]
Eckstein, E. , Pirrera, A. , and Weaver, P. M. , 2013, “ Morphing High-Temperature Composite Plates Utilizing Thermal Gradients,” Compos. Struct., 100, pp. 363–372. [CrossRef]
Schweizer, S. , Calmes, S., Laudon, M., and Renaud, Ph., 1999, “ Thermally Actuated Optical Microscanner With Large Angle and Low Consumption,” Sens. Actuators, A, 76(1–3), pp. 470–477. [CrossRef]
Schmid, P. , Hernandez-Guillen, F. J. , and Kohn, E. , 2003, “ Diamond Switch Using New Thermal Actuation Principle,” Diamond Relat. Mater., 12(3–7), pp. 418–421. [CrossRef]
Singh, J. , Gan, T., Agarwal, A., and Liw, S., 2005, “ 3D Free Space Thermally Actuated Micromirror Device,” Sens. Actuators A, 123–124, pp. 468–475. [CrossRef]
Zhu, Y. , Corigliano, A. , and Espinosa, H. D. , 2006, “ A Thermal Actuator for Nanoscale in Situ Microscopy Testing: Design and Characterization,” J. Micromech. Microeng., 16(2), pp. 242–253. [CrossRef]
Eckstein, E. , Lamacchia, E., Pirrera, A., and Weaver, P. M., 2014, “ Thermally-Driven Snap-Through and Multistability Using Laminated Fibre-Metal Shells,” Sixth European conference on composite materials (ECCM16), Seville, Spain, June 22–26.
Eckstein, E. , Pirrera, A. , and Weaver, P. M. , 2015, “ Thermally Driven Morphing With Hybrid Laminates and Metal Matrix Composites,” AIAA Paper No. 2015-1428.
Eckstein, E. , Pirrera, A. , and Weaver, P. M. , 2016, “ Thermally Driven Morphing and Snap-Through Behavior of Hybrid Laminate Shells,” AIAA J., 54(5), pp. 1778–1788. [CrossRef]
Pirrera, A. , Avitabile, D. , and Weaver, P. M. , 2012, “ On the Thermally Induced Bistability of Composite Cylindrical Shells for Morphing Structures,” Int. J. Solids Struct., 49(5), pp. 685–700. [CrossRef]
Calkins, F. T. , and Mabe, J. H. , 2010, “ Shape Memory Alloy Based Morphing Aerostructures,” ASME J. Mech. Des., 132(11), p. 111012. [CrossRef]
Jani, J. M. , Leary, M., Subic, A., and Gibson, M. A., 2014, “ A Review of Shape Memory Alloy Research, Applications and Opportunities,” Mater. Des., 56, pp. 1078–1113. [CrossRef]
Toropova, M. M. , and Steeves, C. A., 2015, “ Thermal Actuation Through Bimaterial Lattices,” ASME Paper No. SMASIS2015-8855.
Phoenix, A. A. , and Tarazaga, P. A. , 2017, “ Dynamic Model Reduction Using Data-Driven Loewner-Framework Applied to Thermally Morphing Structures,” J. Sound Vib., 396, pp. 274–288. [CrossRef]
Phoenix, A. A. , and Tarazaga, P. A. , 2017, “ Thermal Morphing Anisogrid Smart Space Structures—Part 1: Introduction, Modeling, and Performance of the Novel Smart Structural Application,” J. Vib. Control, epub
Phoenix, A. A. , Jeff, B. , and Tarazaga, P. A. , 2017, “ Thermal Morphing Anisogrid Smart Space Structures—Part 2: Ranking of Geometric Parameter Importance, Trust Region Optimization, and Performance Evaluation,” J. Vib. Control, epub.
Phoenix, A. A. , 2017, “ Thermal Morphing Anisogrid Smart Space Structures: Thermal Isolation Design and Linearity Evaluation,” Proc. SPIE, 10164, p. 101640M.
Phoenix, A. A. , 2017, “ Thermal Modeling and Design of the Anisogrid Morphing Structure for a Modular Optical Telescope Concept,” J. Astron. Telesc., Instrum., Syst., 3(4), p. 047001. [CrossRef]
Bergman, T. L., Incropera, F. P., DeWitt, D. P., and Lavine, A. S., 2011, Fundamentals of Heat and Mass Transfer, Wiley, Hoboken, NJ.
Yovanovich, M. , 1987, “ Theory and Applications of Constriction and Spreading Resistance Concepts for Microelectronic Thermal Management,” International Symposium on Cooling Technology for Electronic Equipment, Honolulu, HI, Mar. 17–21.


Grahic Jump Location
Fig. 3

Metamaterial with normalized applied pressure loading and the resulting stress distribution

Grahic Jump Location
Fig. 2

Metamaterial design with low and high thermal conductivity materials for (a) initial structural configuration, (b) flat plate fem configuration, and (c) curved plate fem configuration

Grahic Jump Location
Fig. 1

Copper and epoxy metamaterial design with a width of 6 cm, a length of 6 cm, and a thickness of 1 cm

Grahic Jump Location
Fig. 4

Thermal profile for the flat plate metamaterial configuration

Grahic Jump Location
Fig. 5

Metamaterial with flat plates thermal conductivity as a function of temperature

Grahic Jump Location
Fig. 6

Thermal distribution of curved metamaterial configuration as a function of contact area

Grahic Jump Location
Fig. 7

Metamaterial thermal conductivity as a function of the applied loading

Grahic Jump Location
Fig. 8

Resulting metamaterial (a) thermal conductivity as a function of contact length and (b) metamaterial stiffness as a function of contact length

Grahic Jump Location
Fig. 9

Resulting design of the applied loading as a function of temperature

Grahic Jump Location
Fig. 10

Resulting metamaterial design for a given metamaterial geometry and a given temperature versus applied loading

Grahic Jump Location
Fig. 11

Resulting metamaterial design for a given metamaterial geometry and prescribed loading as a function of temperature

Grahic Jump Location
Fig. 13

Resulting thermal conductivity study incorporating the contact resistance's impact on overall metamaterial conductivity

Grahic Jump Location
Fig. 14

Coupled metamaterial incorporating radiative and contact resistance effects

Grahic Jump Location
Fig. 12

Resulting thermal conductivity study incorporating the radiative thermal path between the individual metamaterial plates for a bounding surface emissivity cases




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In