0
Research Papers

Magnetic Field and Thermal Radiation Effects in Peristaltic Flow With Heat and Mass Convection

[+] Author and Article Information
T. Hayat

Department of Mathematics,
Quaid-I-Azam University 45320,
Islamabad 44000, Pakistan;
Department of Electrical and
Computer Engineering,
Faculty of Engineering,
King Abdulaziz University,
P.O. Box 80204,
Jeddah 21589, Saudi Arabia

Aneela Bibi

Department of Mathematics,
University of Wah,
Quaid Avanue, The Mall,
Wah Cantt 47040, Pakistan

H. Yasmin

Department of Mathematics,
College of Science,
Majmaah University,
P.O. Box 1712,
Az Zulfi 11932, Saudi Arabia
e-mail: qau2011@gmail.com

Fuad E. Alsaadi

Department of Electrical and
Computer Engineering,
Faculty of Engineering,
King Abdulaziz University,
P.O. Box 80204,
Jeddah 21589, Saudi Arabia

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received August 15, 2017; final manuscript received April 18, 2018; published online June 14, 2018. Assoc. Editor: Sandip Mazumder.

J. Thermal Sci. Eng. Appl 10(5), 051018 (Jun 14, 2018) (9 pages) Paper No: TSEA-17-1299; doi: 10.1115/1.4040282 History: Received August 15, 2017; Revised April 18, 2018

This paper scrutinizes the impact of thermal radiation and applied magnetic field on Jeffrey fluid with peristalsis. The effects of Joule heating and viscous dissipation are retained. Convective conditions are imposed for the heat and mass transfer analysis. Lubrication approach is considered for the analysis. Expressions for pressure gradient, stream function, temperature, concentration, and heat transfer coefficient are developed and physically interpreted through illustrations. It is revealed that temperature enhances for higher estimation of Brinkman and Hartmann numbers, while it decays for larger Biot number. Furthermore, the concentration decreases for varying Schmidt number. Heat transfer coefficient has an oscillatory behavior for larger estimation of radiation parameter.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Latham, T. W. , 1966, “ Fluid Motions in a Peristaltic Pump,” MS thesis, Massachusetts Institute of Technology, Cambridge, MA. http://hdl.handle.net/1721.1/17282
Shapiro, A. H. , Jaffrin, M. Y. , and Weinberg, S. L. , 1969, “ Peristaltic Pumping With Long Wavelengths at Low Reynolds Number,” J. Fluid Mech., 37(4), pp. 799–825. [CrossRef]
Mekheimer, K. S. , Saleem, N. , Hayat, T. , and Hendi, A. A. , 2012, “ Simultaneous Effects of Induced Magnetic Field and Heat and Mass Transfer on the Peristaltic Motion of Second-Order Fluid in a Channel,” Int. J. Numer. Methods, 70(3), pp. 342–358. [CrossRef]
Hayat, T. , Ali, N. , and Hina, S. , 2010, “ Simultaneous Effects of Slip and Heat Transfer on the Peristaltic Flow,” Commun. Nonlinear Sci. Numer. Simul., 15(6), pp. 1526–1537. [CrossRef]
Hayat, T. , Iqbal, R. , Tanveer, A. , and Alsaedi, A. , 2016, “ Mixed Convective Peristaltic Transport of Carreau-Yasuda Nanofluid in a Tapered Asymmetric Channel,” J. Mol. Liq., 223, pp. 1100–1113. [CrossRef]
Ramesh, K. , 2016, “ Effects of Slip and Convective Conditions on the Peristaltic Flow of Couple Stress Fluid in an Asymmetric Channel Through Porous Medium,” Comput. Meth. Prog. Biomed., 135, pp. 1–14. [CrossRef]
Tripathi, D. , and Bég, O. A. , 2014, “ Peristaltic Propulsion of Generalized Burgers' Fluids Through a Non-Uniform Porous Medium: A Study of Chyme Dynamics Through the Diseased Intestine,” Math. Biosci., 248, pp. 67–77. [CrossRef] [PubMed]
Shehzad, S. A. , Abbasi, F. M. , Hayat, T. , and Alsaadi, F. , 2015, “ Model and Comparative Study for Peristaltic Transport of Water Based Nanofluids,” J. Mol. Liq., 209, pp. 723–728. [CrossRef]
Abbasi, F. M. , Hayat, T. , and Ahmad, B. , 2015, “ Peristaltic Transport of Copper–Water Nanofluid Saturating Porous Medium,” Phys. E, 67, pp. 47–53. [CrossRef]
Gad, N. S. , 2014, “ Effects of Hall Currents on Peristaltic Transport With Compliant Walls,” Appl. Math. Comput., 235, pp. 546–554.
Abd-Alla, A. M. , and Abo-Dahab, S. M. , 2015, “ Magnetic Field and Rotation Effects on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel,” J. Magn. Magn. Mater., 374, pp. 680–689. [CrossRef]
Lachiheb, M. , 2014, “ Effect of Coupled Radial and Axial Variability of Viscosity on the Peristaltic Transport of Newtonian Fluid,” Appl. Math. Comput., 244, pp. 761–771.
Shit, G. C. , and Roy, M. , 2014, “ Hydromagnetic Effect on Inclined Peristaltic Flow of a Couple Stress Fluid,” Alexandria Eng. J., 53(4), pp. 949–958. [CrossRef]
Hayat, T. , Alvi, N. , and Ali, N. , 2008, “ Peristaltic Mechanism of a Maxwell Fluid in an Asymmetric Channel,” Nonlinear Anal.: Real World Appl., 9(4), pp. 1474–1490. [CrossRef]
Javed, M. , Hayat, T. , and Alsaedi, A. , 2014, “ Peristaltic Flow of Burgers' Fluid With Compliant Walls and Heat Transfer,” Appl. Math. Comput., 244, pp. 654–671.
Hina, S. , Mustafa, M. , Hayat, T. , and Alotaibi, N. D. , 2015, “ On Peristaltic Motion of Pseudoplastic Fluid in a Curved Channel With Heat/Mass Transfer and Wall Properties,” Appl. Math. Comput., 263, pp. 378–391.
Nadeem, S. , Riaz, A. , Ellahi, R. , and Akbar, N. S. , 2014, “ Series Solution of Unsteady Peristaltic Flow of a Carreau Fluid in Eccentric Cylinders,” Ain-Shams Eng. J., 5(1), pp. 293–304. [CrossRef]
Abbasi, F. M. , Hayat, T. , and Alsaedi, A. , 2015, “ Numerical Analysis for MHD Peristaltic Transport of Carreau-Yasuda Fluid in a Curved Channel With Hall Effects,” J. Magn. Magn. Mater., 382, pp. 104–110. [CrossRef]
Abd Elmaboud, Y. , 2012, “ Influence of Induced Magnetic Field on Peristaltic Flow in an Annulus,” Commun. Nonlinear Sci. Numer. Simul., 17(2), pp. 685–698. [CrossRef]
Hina, S. , Mustafa, M. , Hayat, T. , and Alsaedi, A. , 2016, “ Peristaltic Transport of Powell–Eyring Fluid in a Curved Channel With Heat/Mass Transfer and Wall Properties,” Int. J. Heat Mass Transfer, 101, pp. 156–165. [CrossRef]
Hayat, T. , Yasmin, H. , Ahmad, B. , and Chen, B. , 2014, “ Simultaneous Effects of Convective Conditions and Nanoparticles on Peristaltic Motion,” J. Mol. Liq., 193, pp. 74–82. [CrossRef]
Hayat, T. , Yasmin, H. , Alhuthali, M. S. , and Kutbi, M. A. , 2013, “ Peristaltic Flow of a Non Newtonian Fluid in an Asymmetric Channel With Convective Boundary Conditions,” J. Mech., 29(4), pp. 599–607. [CrossRef]
Awais, M. , Farooq, S. , Yasmin, H. , Hayat, T. , and Alsaedi, A. , 2014, “ Convective Heat Transfer Analysis for MHD Peristaltic Flow in an Asymmetric Channel,” Int. J. Biomath., 7(3), p. 15.
Sayed, H. M. , Aly, E. H. , and Vajravelu, K. , 2016, “ Influence of Slip and Convective Boundary Conditions on Peristaltic Transport of Non-Newtonian Nanofluids in an Inclined Asymmetric Channel,” Alexandria Eng. J., 55(3), pp. 2209–2220. [CrossRef]
Hussain, Q. , Hayat, T. , Asghar, S. , and Alsulami, H. H. , 2014, “ Mixed Convective Peristaltic Transport in a Vertical Channel With Robin's Condition,” J. Braz. Soc. Mech. Sci. Eng., 36(4), pp. 681–695. [CrossRef]
Hayat, T. , Zahir, H. , Tanveer, A. , and Alsaedi, A. , 2017, “ Soret and Dufour Effects on MHD Peristaltic Transport of Jeffrey Fluid in a Curved Channel With Convective Boundary Conditions,” PLos One, 12(2), p. e0164854. [CrossRef] [PubMed]
Abd-Alla, A. M. , and Abo-Dahab, S. M. , 2016, “ Rotation Effect on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel With Gravity Field,” Alexandria Eng. J, 55(2), pp. 1725–1735. [CrossRef]
Kothandapani, M. , and Prakash, J. , 2015, “ Effect of Radiation and Magnetic Field on Peristaltic Transport of Nanofluids Through a Porous Space in a Tapered Asymmetric Channel,” J. Magn. Magn. Mater., 378, pp. 152–163. [CrossRef]
Kothandapani, M. , and Prakash, J. , 2015, “ Effects of Thermal Radiation Parameter and Magnetic Field on the Peristaltic Motion of Williamson Nanofluids in a Tapered Asymmetric Channel,” Int. J. Heat Mass Transfer, 81, pp. 234–245. [CrossRef]
Sheikholeslami, M. , Domiri Ganji, D. , Younus Javed, M. , and Ellahi, R. , 2015, “ Effect of Thermal Radiation on Magnetohydrodynamics Nanofluid Flow and Heat Transfer by Means of Two Phase Model,” J. Magn. Magn. Mater., 374, pp. 36–43. [CrossRef]
Hayat, T. , Nisar, Z. , Yasmin, H. , and Alsaedi, A. , 2016, “ Peristaltic Transport of Nanofluid in a Compliant Wall Channel With Convective Conditions and Thermal Radiation,” J. Mol. Liq., 220, pp. 448–453. [CrossRef]
Reddy, M. G. , Reddy, K. V. , and Makinde, O. D. , 2016, “ Hydromagnetic Peristaltic Motion of a Reacting and Radiating Couple Stress Fluid in an Inclined Asymmetric Channel Filled With a Porous Medium,” Alexandria Eng. J., 55(2), pp. 1841–1853. [CrossRef]
Srivastava, L. M. , and Srivastava, V. P. , 1988, “ Peristaltic Transport of a Power Law Fluid: Applications to the Ductus Efferentes of the Reproductive Tract,” Rheol. Acta, 27(4), pp. 428–433. [CrossRef]
Lew, H. S. , Fung, Y. C. , and Lowenstein, C. B. , 1971, “ Peristaltic Carrying and Mixing of Chyme,” J. Biomech., 4(4), pp. 297–315. [CrossRef] [PubMed]
Eytan, O. , and Elad, D. , 1999, “ Analysis of Intra-Uterine Fluid Motion Induced by Uterine Contractions,” Bull. Math. Biol., 61(2), pp. 221–238. [CrossRef] [PubMed]
Strohmer, H. , Obruca, A. , Rander, K. M. , and Feichtinger, W. , 1994, “ Relationship of the Individual Uterine Size and the Endometrial Thickness in Stimulated Cycles,” Fertil. Steril., 61(5), pp. 972–975. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Geometry of the problem

Grahic Jump Location
Fig. 2

Influence of M on (dp/dx) when d = 0.3, Q = 1.4, and λ1 = 0.4

Grahic Jump Location
Fig. 3

Influence of λ1 on (dp/dx) when d = 0.3, Q = 1.4, and M = 1

Grahic Jump Location
Fig. 4

Influence of d on (dp/dx) when λ1 = 0.4, Q = 1.4, and M = 1

Grahic Jump Location
Fig. 5

Influence of M on Δpλ when d = 0.3 and λ1 = 0.4

Grahic Jump Location
Fig. 6

Influence of d on Δpλ when λ1 = 0.4 and M = 0.5

Grahic Jump Location
Fig. 7

Influence of λ1 on Δpλ when d = 0.3 and M = 0.5

Grahic Jump Location
Fig. 8

Influence of M on θ when d = 0.3, x = 0.1, Br = 2, γt = 0.5, Q = 1.4, λ1 = 0.4, and R1 = 0.5

Grahic Jump Location
Fig. 9

Influence of Br on θ when d = 0.3, x = 0.1, M = 1, γt = 0.5, Q = 1.4, λ1 = 0.4, and R1 = 0.5

Grahic Jump Location
Fig. 10

Influence of γt on θ when d = 0.3, x = 0.1, Br = 2, M = 1, Q = 1.4, λ1 = 0.4, and R1 = 0.5

Grahic Jump Location
Fig. 11

Influence of λ1 on θ when d = 0.3, x = 0.1, Br = 2, γt = 0.5, Q = 1.4, M = 1, and R1 = 0.5

Grahic Jump Location
Fig. 12

Influence of R1 on θ when d = 0.3, x = 0.1, Br = 2, γt = 0.5, Q = 1.4, M = 1, and λ1 = 0.4

Grahic Jump Location
Fig. 13

Influence of M on ϕ when d = 0.3, x = 0.1, Br = 2, γm = 0.5, Q = 1.4, λ1 = 0.4, R1 = 0.5, Sc = 0.5, and Sr = 0.5

Grahic Jump Location
Fig. 14

Influence of Sc on ϕ when d = 0.3, x = 0.1, Br = 2, γm = 0.5, Q = 1.4, λ1 = 0.4, R1 = 0.5, M = 1, and Sr = 0.5

Grahic Jump Location
Fig. 15

Influence of Sr on ϕ when d = 0.3, x = 0.1, Br = 2, γm = 0.5, Q = 1.4, λ1 = 0.4, R1 = 0.5, Sc = 0.5, and M = 1

Grahic Jump Location
Fig. 16

Influence of Br on ϕ when d = 0.3, x = 0.1, M = 1, γm = 0.5, Q = 1.4, λ1 = 0.4, R1 = 0.5, Sc = 0.5, and Sr = 0.5

Grahic Jump Location
Fig. 17

Influence of γm on ϕ when d = 0.3, x = 0.1, Br = 2, M = 1, Q = 1.4, λ1 = 0.4, R1 = 0.5, Sc = 0.5, and Sr = 0.5

Grahic Jump Location
Fig. 18

Influence of λ1 on ϕ when d = 0.3, x = 0.1, Br = 2, γm = 0.5, Q = 1.4, M = 1, R1 = 0.5, Sc = 0.5, and Sr = 0.5

Grahic Jump Location
Fig. 19

Influence of R1 on ϕ when d = 0.3, x = 0.1, Br = 2, M = 1, Q = 1.4, λ1 = 0.4, γm = 0.5, Sc = 0.5, and Sr = 0.5

Grahic Jump Location
Fig. 20

Influence of M on Z when d = 0.3, Br = 1, γt = 0.5, Q = 1.4, λ1 = 0.4, and R1 = 0.5

Grahic Jump Location
Fig. 21

Influence of γt on Z when d = 0.3, Br = 1, M = 1, Q = 1.4, λ1 = 0.4, and R1 = 0.5

Grahic Jump Location
Fig. 22

Influence of Br on Z when d = 0.3, M = 1, γt = 0.5, Q = 1.4, λ1 = 0.1, and R1 = 0.2

Grahic Jump Location
Fig. 23

Influence of λ1 on Z when d = 0.3, Br = 1, γt = 0.5, Q = 1.4, M = 1, and R1 = 0.2

Grahic Jump Location
Fig. 24

Influence of R1 on Z when d = 0.3, M = 1, γt = 0.5, Q = 1.4, λ1 = 0.1, and Br = 1

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In