0
Research Papers

Magnetohydrodynamics Stagnation-Point Flow of Sisko Liquid With Melting Heat Transfer and Heat Generation/Absorption

[+] Author and Article Information
Tasawar Hayat

Department of Mathematics,
Quaid-I-Azam University 45320,
Islamabad 44000, Pakistan;
Faculty of Science,
NAAM Research Group,
King Abdulaziz University,
P.O. Box 80207,
Jeddah 21589, Saudi Arabia

Ikram Ullah

Department of Mathematics,
Quaid-I-Azam University 45320,
Islamabad 44000, Pakistan

Ahmed Alsaedi

Faculty of Science,
NAAM Research Group,
King Abdulaziz University,
P.O. Box 80207,
Jeddah 21589, Saudi Arabia

Saleem Asghar

Department of Mathematics,
CIIT,
Islamabad 44000, Pakistan

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received April 26, 2017; final manuscript received April 2, 2018; published online June 14, 2018. Assoc. Editor: Ali J. Chamkha.

J. Thermal Sci. Eng. Appl 10(5), 051015 (Jun 14, 2018) (8 pages) Paper No: TSEA-17-1135; doi: 10.1115/1.4040032 History: Received April 26, 2017; Revised April 02, 2018

This research concentrates on melting heat transfer in magnetohydrodynamics (MHD) flow of Sisko fluid bounded by a sheet with nonlinear stretching velocity. Modeling and analysis have been carried out in the presence of heat generation/absorption and magnetic field. Transformation procedure is implemented in obtaining nonlinear differential system. Convergence series solutions are developed. The solution for different influential parameters is analyzed. Skin friction coefficient and heat transfer rate are analyzed. It is observed that the qualitative results of magnetic field and melting heat transfer on velocity are similar.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sakiadis, B. C. , 1961, “ Boundary Layer Behavior on Continuous Solid Surfaces—Part I: Boundary Layer Equations for Two-Dimensional and Axisymmetric Flow,” AIChE J., 7(1), pp. 26–28. [CrossRef]
Chamkha, A. J. , and Khaled, A. R. A. , 2000, “ Hydromagnetic Combined Heat and Mass Transfer by Natural Convection From a Permeable Surface Embedded in a Fluid-Saturated Porous Medium,” Int. J. Numer. Methods Heat Fluid Flow, 10(5), pp. 455–477. [CrossRef]
Takhar, H. S. , Chamkha, A. J. , and Nath, G. , 2001, “ Unsteady Three-Dimensional MHD-Boundary-Layer Flow Due to the Impulsive Motion of a Stretching Surface,” Acta Mech., 146(1–2), pp. 59–71. [CrossRef]
Hayat, T. , Ullah, I. , Alsaedi, A. , and Ahmad, B. , 2017, “ Radiative Flow of Carreau Liquid in Presence of Newtonian Heating and Chemical Reaction,” Results Phys., 7, pp. 715–722. [CrossRef]
Mudhaf, A. A. , and Chamkha, A. J. , 2005, “ Similarity Solutions for MHD Thermo-Solutal Marangoni Convection Over a Flat Surface in the Presence of Heat Generation or Absorption Effects,” Heat Mass Transfer, 42(2), pp. 112–121. [CrossRef]
Chamkha, A. J. , and Mudhaf, A. A. , 2005, “ Unsteady Heat and Mass Transfer From a Rotating Vertical Cone With a Magnetic Field and Heat Generation or Absorption Effects,” Int. J. Therm. Sci., 44(3), pp. 267–276. [CrossRef]
Hayat, T. , Ullah, I. , Alsaedi, A. , and Ahmad, B. , 2017, “ Modeling Tangent Hyperbolic Nanoliquid Flow With Heat and Mass Flux Conditions,” Eur. Phys. J. Plus, 132(3), p. 112. [CrossRef]
Khedr, M. E. M. , Chamkha, A. J. , and Bayomi, M. , 2009, “ MHD Flow of a Micropolar Fluid Past a Stretched Permeable Surface With Heat Generation or Absorption,” Nonlinear Anal.-Model., 14(1), pp. 27–40. https://www.mii.lt/na/issues/NA_1401/NA14103.pdf
Hayat, T. , Ullah, I. , Muhammad, T. , and Alsaedi, A. , 2017, “ Thermal and Solutal Stratification in Mixed Convection Three-Dimensional Flow of an Oldroyd-B Nanofluid,” Results Phys., 7, pp. 3797–3805. [CrossRef]
Chamkha, A. J. , and Aly, A. M. , 2010, “ MHD Free Convection Flow of a Nanofluid Past a Vertical Plate in the Presence of Heat Generation or Absorption Effects,” Chem. Eng. Commun., 198(3), pp. 425–441. [CrossRef]
Chamkha, A. J. , 1997, “ MHD-Free Convection From a Vertical Plate Embedded in a Thermally Stratified Porous Medium With Hall Effects,” Appl. Math. Model, 21(10), pp. 603–609. [CrossRef]
Hayat, T. , Ullah, I. , Alsaedi, A. , Waqas, M. , and Ahmad, B. , 2017, “ Three-Dimensional Mixed Convection Flow of Sisko Nanoliquid,” Int. J. Mech. Sci., 133, pp. 273–282. [CrossRef]
Chamkha, A. J. , Abbasbandy, S. , and Rashad, A. M. , 2015, “ Non-Darcy Natural Convection Flow for Non-Newtonian Nanofluid Over Cone Saturated in Porous Medium With Uniform Heat and Volume Fraction Fluxes,” Int. J. Numer. Methods Heat Fluid Flow, 25(2), pp. 422–437. [CrossRef]
Hayat, T. , Ullah, I. , Ahmed, B. , and Alsaedi, A. , 2017, “ MHD Mixed Convection Flow of Third Grade Liquid Subject to Non-Linear Thermal Radiation and Convective Condition,” Results Phys., 7, pp. 2804–2811. [CrossRef]
Mustafa, M. , Mushtaq, A. , Hayat, T. , and Alsaedi, A. , 2015, “ Radiation Effects in Three-Dimensional Flow Over a Bi-Directional Exponentially Stretching Sheet,” J. Taiwan Inst. Chem. Eng., 47, pp. 43–49. [CrossRef]
Hayat, T. , Ullah, I. , Muhammad, T. , and Alsaedi, A. , 2016, “ Magnetohydrodynamic (MHD) Three-Dimensional Flow of Second Grade Nanofluid by a Convectively Heated Exponentially Stretching Surface,” J. Mol. Liq., 220, pp. 1004–1012. [CrossRef]
Hayat, T. , Ullah, I. , Alsaedi, A. , and Ahmad, B. , 2018, “ Numerical Simulation for Homogeneous–Heterogeneous Reactions in Flow of Sisko Fluid,” J. Braz. Soc. Mech. Sci. Eng., 40(2), p. 73.
Vajravelu, K. , 2001, “ Viscous Flow Over a Nonlinearly Stretching Sheet,” Appl. Math. Comput., 124(3), pp. 281–288.
Cortell, R. , 2008, “ Effects of Viscous Dissipation and Radiation on the Thermal Boundary Layer Over a Nonlinearly Stretching Sheet,” Phys. Lett. A, 372(5), pp. 631–636. [CrossRef]
Rana, P. , and Bhargava, R. , 2012, “ Flow and Heat Transfer of a Nanofluid Over a Nonlinearly Stretching Sheet: A Numerical Study,” Commun. Nonlinear Sci. Numer. Simul., 17(1), pp. 212–226. [CrossRef]
Mukhopadhyay, S. , 2013, “ Analysis of Boundary Layer Flow Over a Porous Nonlinearly Stretching Sheet With Partial Slip at the Boundary,” Alex. Eng. J, 52(4), pp. 563–569. [CrossRef]
Mabood, F. , Khan, W. A. , and Ismail, A. I. M. , 2015, “ MHD Boundary Layer Flow and Heat Transfer of Nanofluids Over a Nonlinear Stretching Sheet: A Numerical Study,” J. Magn. Magn. Mater., 374, pp. 569–576. [CrossRef]
Hayat, T. , Aziz, A. , Muhammad, T. , and Ahmad, B. , 2016, “ On Magnetohydrodynamic Flow of Second Grade Nanofluid Over a Nonlinear Stretching Sheet,” J. Magn. Magn. Mater., 408, pp. 99–106. [CrossRef]
Das, K. , Acharya, N. , and Kundu, P. K. , 2015, “ Radiative Flow of MHD Jeffrey Fluid Past a Stretching Sheet With Surface Slip and Melting Heat Transfer,” Alex. Eng. J., 54(4), pp. 815–821. [CrossRef]
Epstein, M. , and Cho, D. H. , 1976, “ Melting Heat Transfer in Steady Laminar Flow Over a Flat Plate,” ASME J. Heat Transfer, 98(3), pp. 531–533. [CrossRef]
Ishak, A. , Nazar, R. , Bachok, N. , and Pop, I. , 2010, “ Melting Heat Transfer in Steady Laminar Flow Over a Moving Surface,” Heat Mass Transfer, 46(4), pp. 463–468. [CrossRef]
Bachok, N. , Ishak, A. , and Pop, I. , 2010, “ Melting Heat Transfer in Boundary Layer Stagnation-Point Flow Towards a Stretching/Shrinking Sheet,” Phys. Lett. A, 374(40), pp. 4075–4079. [CrossRef]
Hayat, T. , Khan, M. I. , Waqas, M. , Alsaedi, A. , and Farooq, M. , 2017, “ Numerical Simulation for Melting Heat Transfer and Radiation Effects in Stagnation Point Flow of Carbon-Water Nanofluid,” Comput. Methods Appl. Mech. Eng., 315, pp. 1011–1024. [CrossRef]
Hiemenz, K. , 1911, “ Die Grenzschicht an Einem in Den Gleichformingen Flussigkeitsstrom Eingetauchten Graden Kreiszylinder,” Dinglers Polytech. J., 326, pp. 321–324.
Mabood, F. , and Khan, W. A. , 2014, “ Approximate Analytic Solutions for Influence of Heat Transfer on MHD Stagnation Point Flow in Porous Medium,” Comput. Fluids, 100, pp. 72–78. [CrossRef]
Chamkha, A. J. , and Ahmed, S. E. , 2011, “ Similarity Solution for Unsteady MHD Flow Near a Stagnation Point of a Three-Dimensional Porous Body With Heat and Mass Transfer, Heat Generation/Absorption and Chemical Reaction,” J. Appl. Fluid Mech., 4(2), pp. 87–94. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=C6DB4994C572F81C77482F3405C7A20D?doi=10.1.1.679.5931&rep=rep1&type=pdf
Hayat, T. , Shafiq, A. , and Alsaedi, A. , 2016, “ Characteristics of Magnetic Field and Melting Heat Transfer in Stagnation Point Flow of Tangent-Hyperbolic Liquid,” J. Magn. Magn. Mater., 405, pp. 97–106. [CrossRef]
Sisko, A. W. , 1958, “ The Flow of Lubricating Greases,” Ind. Eng. Chem., 50(12), pp. 1789–1792. [CrossRef]
Wang, Y. , Hayat, T. , Ali, N. , and Oberlack, M. , 2008, “ Magnetohydrodynamic Peristaltic Motion of a Sisko Fluid in a Symmetric or Asymmetric Channel,” Physics A, 387(2–3), pp. 347–362. [CrossRef]
Abelman, S. , Hayat, T. , and Momoniat, E. , 2009, “ On the Rayleigh Problem for a Sisko Fluid in a Rotating Frame,” Appl. Math. Comput., 215(7), pp. 2515–2520.
Khan, M. , and Shahzad, A. , 2012, “ On Axisymmetric Flow of Sisko Fluid Over a Radially Stretching Sheet,” Int. J. Nonlinear Mech., 47(9), pp. 999–1007. [CrossRef]
Mekheimer, K. S. , and El Kot, M. A. , 2012, “ Mathematical Modelling of Unsteady Flow of a Sisko Fluid Through an Anisotropically Tapered Elastic Arteries With Time-Variant Overlapping Stenosis,” Appl. Math. Model., 36(11), pp. 5393–5407. [CrossRef]
Malik, R. , Khan, M. , Munir, A. , and Khan, W. A. , 2014, “ Flow and Heat Transfer in Sisko Fluid With Convective Boundary Condition,” PLos One, 9(10), p. e107989. [CrossRef] [PubMed]
Liao, S. , 2003, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press, Boca Raton, FL. [CrossRef]
Turkyilmazoglu, M. , 2012, “ Solution of the Thomas-Fermi Equation With a Convergent Approach,” Commun. Nonlinear Sci. Numer. Simul., 17(11), pp. 4097–4103. [CrossRef]
Abbasbandy, S. , Hashemi, M. S. , and Hashim, I. , 2013, “ On Convergence of Homotopy Analysis Method and Its Application to Fractional Integro-Differential Equations,” Quaest. Math., 36(1), pp. 93–105. [CrossRef]
Hayat, T. , Shehzad, S. A. , and Alsaedi, A. , 2012, “ Soret and Dufour Effects on Magnetohydrodynamic (MHD) Fow of Casson Fuid,” Appl. Math. Mech., 33(10), pp. 1301–1312. [CrossRef]
Hayat, T. , Ullah, I. , Muhammad, T. , Alsaedi, A. , and Shehzad, S. A. , 2016, “ Three-Dimensional Flow of Powell-Eyring Nanofluid With Heat and Mass Flux Boundary Conditions,” Chin. Phys. B, 25(7), p. 074701. [CrossRef]
Lin, Y. , Zheng, L. , and Chen, G. , 2015, “ Unsteady Flow and Heat Transfer of Pseuodoplastic Nanofluid in a Finite Thin Flim on a Stretching Surface With Variable Thermal Conductivity and Viscous Dissipation,” Powder Technol., 274, pp. 342–332.
Hayat, T. , Ullah, I. , Alsaedi, A. , and Farooq, M. , 2017, “ MHD Flow of Powell-Eyring Nanofluid Over a Non-Linear Stretching Sheet With Variable Thickness,” Results Phys., 7, pp. 189–196. [CrossRef]
Keimanesh, M. , Rashidi, M. M. , Chamkha, A. J. , and Jafari, R. , 2011, “ Study of a Third Grade Non-Newtonian Fluid Flow Between Two Parallel Plates Using the Multi-Step Differential Transform Method,” Comput. Math. Appl., 62(8), pp. 2871–2891. [CrossRef]
Hayat, T. , Ullah, I. , Muhammad, T. , and Alsaedi, A. , 2017, “ Radiative Three-Dimensional Flow With Soret and Dufour Effects,” Int. J. Mech. Sci., 133, pp. 829–837. [CrossRef]
Schilchting, H. , 1964, Boundary Layer Theory, McGraw-Hill, New York.
Hayat, T. , Ullah, I. , Muhammad, T. , and Alsaedi, A. , 2017, “ A Revised Model for Stretched Flow of Third Grade Fluid Subject to Magneto Nanoparticles and Convective Condition,” J. Mol. Liq., 230, pp. 608–615. [CrossRef]
Zaigham Zia, Q. M. , Ullah, I. , Waqas, M. , Alsaedi, A. , and Hayat, T. , 2018, “ Cross Diffusion and Exponential Space Dependent Heat Source Impacts in Radiated Three-Dimensional (3D) Flow of Casson Fluid by Heated Surface,” Results Phys., 8, pp. 1275–1282. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The ℏ-curves for f when n = 2

Grahic Jump Location
Fig. 2

The ℏ-curves for θ when n=2

Grahic Jump Location
Fig. 3

Effect of f′(ξ) via λ

Grahic Jump Location
Fig. 4

Effect of f′(ξ) via M

Grahic Jump Location
Fig. 9

Effect of f′(ξ) via β

Grahic Jump Location
Fig. 10

Effect of θ(ξ) via M

Grahic Jump Location
Fig. 11

Effect of θ(ξ) via (β>0)

Grahic Jump Location
Fig. 5

Effect of f′(ξ) via Pr

Grahic Jump Location
Fig. 6

Effect of f′(ξ) via Me

Grahic Jump Location
Fig. 7

Effect of f′(ξ) via A

Grahic Jump Location
Fig. 8

Effect of f′(ξ) via m

Grahic Jump Location
Fig. 12

Effect of θ(ξ) via (β<0)

Grahic Jump Location
Fig. 13

Effect of θ(ξ) via λ

Grahic Jump Location
Fig. 14

Effect of θ(ξ) via m

Grahic Jump Location
Fig. 15

Effect of θ(ξ) via Pr

Grahic Jump Location
Fig. 16

Effect of θ(ξ) via M

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In