Research Papers

Metamaterial Window Glass

[+] Author and Article Information
Alex Heltzel

PC Krause and Associates, Inc.,
3000 Kent Avenue,
West Lafayette, IN 47906
e-mail: heltzel@pcka.com

Tyler Mann

Department of Mechanical Engineering,
The University of Texas at Austin,
204 E. Dean Keeton St.,
Austin, TX 78712
e-mail: tmann216@gmail.com

John R. Howell

Fellow ASME
Department of Mechanical Engineering,
The University of Texas at Austin,
204 E. Dean Keeton St.,
Austin, TX 78712
e-mail: jhowell@mail.utexas.edu

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received April 29, 2015; final manuscript received March 8, 2018; published online May 22, 2018. Editor: S. A. Sherif.

J. Thermal Sci. Eng. Appl 10(5), 051010 (May 22, 2018) (6 pages) Paper No: TSEA-15-1130; doi: 10.1115/1.4039921 History: Received April 29, 2015; Revised March 08, 2018

A computational study of a metamaterial (MTM)-on-glass composite is presented for the purpose of increasing the energy efficiency of buildings in seasonal or cold climates. A full-spectrum analysis yields the ability to predict optical and thermal transmission properties from ultraviolet through far-infrared frequencies. An opportunity to increase efficiency beyond that of commercial low-emissivity glass is identified through a MTM implementation of Ag and dielectric thin-film structures. Three-dimensional finite difference time-domain (FDTD) simulations predict selective nonlinear absorption of near-infrared energy, providing the means to capture a substantial portion of solar energy during cold periods, while retaining high visible transmission and high reflectivity in far-infrared frequencies. The effect of various configuration parameters is quantified, with prediction of the net sustainability advantage. MTM window glass technology can be realized as a modification to commercial low-emissivity windows through the application of nanomanufactured films, creating the opportunity for both new and after-market sustainable construction.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Francoeur, M. , 2010, “ Near-Field Radiative Transfer: Thermal Radiation, Thermophotovoltaic Power Generation and Optical Characterization,” Doctoral dissertation, University of Kentucky, Lexington, KY. https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1081&context=gradschool_diss
Fu, C. , and Zhang, Z. M. , 2009, “ Thermal Radiative Properties of Metamaterials and Other Nanostructured Materials: A Review,” Front. Energy Power Eng. China, 3(1), pp. 11–26. [CrossRef]
Greffet, J. J. , and Henkel, C. , 2007, “ Coherent Thermal Radiation,” Contemp. Phys., 48(4), pp. 183–194. [CrossRef]
Greffet, J. J. , Carminati, R. , Joulain, K. , Mulet, J. P. , Mainguy, S. , and Chen, Y. , 2002, “ Coherent Emission of Light by Thermal Sources,” Nature, 416(6876), pp. 61–64. [CrossRef] [PubMed]
Hasman, E. , Kleiner, V. , Gorodetski, Y. , Frischwasser, K. , and Balin, I. , 2012, “ Manipulation of Thermal Emission by Use of Micro and Nanoscale Structures,” ASME J. Heat Transfer, 134(3), p. 031023.
Laroche, M. , Arnold, C. , Marquier, F. , Carminati, R. , Greffet, J.-J. , Collin, S. , Bardou, N. , and Pelouard, J.-L. , 2005, “ Highly Directional Radiation Generated by a Tungsten Thermal Source,” Opt. Lett., 30(19), pp. 2623–2625. [CrossRef] [PubMed]
Lee, B. J. , and Zhang, Z. M. , 2007, “ Coherent Thermal Emission From Modified Periodic Multilayer Structures,” ASME J. Heat Transfer, 129(1), pp. 17–26. [CrossRef]
Liu, X. , Tyler, T. , Starr, T. , Starr, A. , Jokerst, N. M. , and Padilla, W. J. , 2011, “ Taming the Blackbody With Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett., 107(4), p. 045901. [CrossRef] [PubMed]
McConnell, S. M. , 2012, “ Spectral and Spatial Coherent Emission of Thermal Radiation From Metal-Semiconductor Nanostructures,” Master's thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH. http://www.dtic.mil/docs/citations/ADA557878
McConnell, S. N. , Seal, M. D. , Nauyoks, S. E. , Murphy, N. R. , Sun, L. , and Marciniak, M. A. , 2012, “ Spectral Coherent Emission of Thermal Radiation in the Far-Field From a Truncated Resonator,” Proc. SPIE, 8457, p. 845736.
Sheng, S. , Narayanaswamy, A. , and Chen, G. , 2009, “ Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps,” Nano Lett., 9(8), pp. 2909–2913. [CrossRef] [PubMed]
Ye, Y. , Jiang, Y. , Tsai, M. , Chang, Y. , Chen, C. , Tzuang, D.-C. , Wu, Y.-T. , and Lee, S.-C. , 2008, “ Coupling of Surface Plasmons Between Two Silver Films in a Ag/SiO2/Ag Plasmonic Thermal Emitter With Grating Structure,” Appl. Phys. Lett., 93(26), p. 263106. [CrossRef]
Chen, T. , Li, S. , and Sun, H. , 2012, “ Metamaterials Application in Sensing,” Sensor, 12(3), pp. 2742–2765. [CrossRef] [PubMed]
Wu, C. , Neuner, B. , John, J. , Milder, A. , Zollars, B. , Savoy, S. , and Shvets, G. , 2012, “ Metamaterial-Based Integrated Plasmonic Absorber/Emitter for Solar Thermo-Photovoltaic Systems,” J. Opt., 14(2), p. 024005. [CrossRef]
Kundtz, N. , and Smith, D. R. , 2010, “ Extreme-Angle Broadband Metamaterial Lens,” Nat. Mater., 9(2), pp. 129–132. [CrossRef] [PubMed]
Boltasseva, A. , and Atwater, H. A. , 2011, “ Low-Loss Plasmonic Metamaterials,” Science, 331(6015), pp. 290–291. [CrossRef] [PubMed]
Schurig, D. , Mock, J. J. , Justice, B. J. , Cummer, S. A. , Pendry, J. B. , Starr, A. F. , and Smith, D. R. , 2006, “ Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314(5801), pp. 977–980. [CrossRef] [PubMed]
Yao, J. , Liu, Z. , Liu, Y. , Wang, Y. , Sun, C. , Bartal, G. , Stacy, A. M. , and Zhang, X. , 2008, “ Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science, 321(5891), p. 930. [CrossRef] [PubMed]
Monticone, F. , and Alu, A. , 2016, “ Invisibility Exposed: Physical Bounds on Passive Cloaking,” Optica, 3(7), pp. 718–724. [CrossRef]
Li, W. , Guler, U. , Kinsey, N. , Naik, G. V. , Boltasseva, A. , Guan, J. , Shalaev, V. M. , and Kildishev, A. V. , 2014, “ Refractory Plasmonics With Titanium Nitride: Broadband Metamaterial Absorber,” Adv Mater., 26(47), pp. 7959–7965. [CrossRef] [PubMed]
Naik, G. V. , and Boltasseva, A. , 2011, “ A Comparative Study of Semiconductor-Based Plasmonic Metamaterials,” Metamaterials, 5(1), pp. 1–7. [CrossRef]
Zhai, Y. , Ma, Y. , David, S. N. , Zhao, D. , Lou, R. , Tan, G. , Yang, R. , and Yin, X. , 2017, “ Scalable-Manufactured Randomized Glass-Polymer Hybrid Metamaterial for Daytime Radiative Cooling,” Science, 355(6329), pp. 1062–1066. [CrossRef] [PubMed]
Heltzel, A. , 2016, “ Composite Material for Passive Radiative Cooling,” P C Krause Associates, West Lafayette, IN, U.S. Patent No. US15172304. https://patents.google.com/patent/US20160356561A1/en
Hajimirza, S. , El Hitti, G. , Heltzel, A. , and Howell, J. , 2012, “ Specification of Micro-Nanoscale Radiative Patterns Using Inverse Analysis for Increasing Solar Panel Efficiency,” ASME J. Heat Transfer, 134(10), p. 102702. [CrossRef]
Hajimirza, S. , El Hitti, G. , Heltzel, A. , and Howell, J. , 2012, “ Using Inverse Analysis to Find Optimum Nano-Scale Radiative Surface Patterns to Enhance Solar Cell Performance,” Int. J. Thermal Sci., 62, pp. 93–102.
Taflove, A. , and Hagness, S. , 2005, Computational Electrodynamics, 3rd ed., Artech House, Boston-London.
Lumerical Solutions, 2018, “ FDTD Solutions,” Lumerical Solutions, Vancouver, BC, Canada, accessed Apr. 17, 2018, https://www.lumerical.com/tcad-products/fdtd/


Grahic Jump Location
Fig. 5

Reflected radiant intensity as a function of wavelength for low-e and MTM glass configurations (100 nm square dimension)

Grahic Jump Location
Fig. 4

FDTD-predicted spectra of MTM window glass in (a) winter configuration and rotated to (b) summer configuration

Grahic Jump Location
Fig. 3

Electric field distributions normal to MTM window plane (left) and parallel to nanopatterned layer (right), winter configuration (a) and summer configuration (b). Color scales in intensity normalized to incident I/I0 = |E|2/|E|02.

Grahic Jump Location
Fig. 2

Conceptual representation of a MTM window glass design

Grahic Jump Location
Fig. 1

FDTD-predicted spectra of low-emissivity window glass (10 nm Ag thin-film)

Grahic Jump Location
Fig. 6

Reflected radiant intensity as a function of wavelength for low-e and MTM glass configurations (200 nm square dimension)

Grahic Jump Location
Fig. 7

Energy capture as a function of MTM coverage of Ag base layer (constant MTM square width)

Grahic Jump Location
Fig. 8

Energy capture as a function of MTM coverage of Ag base layer (constant MTM period dimension)

Grahic Jump Location
Fig. 9

Absorption shift as a function of MTM spacing

Grahic Jump Location
Fig. 10

FDTD-predicted spectra of MTM window glass in winter configuration with incident radiation 30 deg off-normal




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In