0
Research Papers

Slip Effects on Peristaltic Flow of Magnetohydrodynamics Second Grade Fluid Through a Flexible Channel With Heat/Mass Transfer

[+] Author and Article Information
S. Hina

Department of Mathematical Sciences,
Fatima Jinnah Women University,
Rawalpindi 46000, Pakistan
e-mail: quaidan85@yahoo.com

Maria Yasin

Department of Mathematical Sciences,
Fatima Jinnah Women University,
Rawalpindi 46000, Pakistan

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received September 18, 2017; final manuscript received January 18, 2018; published online May 8, 2018. Assoc. Editor: Ali J. Chamkha.

J. Thermal Sci. Eng. Appl 10(5), 051002 (May 08, 2018) Paper No: TSEA-17-1355; doi: 10.1115/1.4039544 History: Received September 18, 2017; Revised January 18, 2018

In the present framework, a model is constituted to explore the peristalsis of magnetohydrodynamics (MHD) viscoelastic (second grade) fluid with wall properties. The study is beneficial in understanding blood flow dynamics through microchannels. The mechanisms of heat and mass transfer are also modeled in the existence of viscous dissipation and Soret effects. The conducting second grade fluid is permeated by a vertical magnetic field. Perturbation technique is opted to present series solutions by assuming that the wavelength of the sinusoidal wave is small in comparison to the half-width of the channel. The solution profiles are computed and elucidated for a certain range of embedded parameters. Moreover, plots of heat transfer coefficient against the axial coordinate are also portrayed and deliberated. The main outcome of the current research is that both viscoelasticity and slip effect considerably alter the flow fields. Moreover, an increasing trend in solute concentration is anticipated for increasing the Soret effect strength.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hayat, T. , Khan, M. , Siddiqui, A. M. , and Asghar, S. , 2007, “Non-Linear Peristaltic Flow of a Non-Newtonian Fluid Under Effect of a Magnetic Field in a Planar Channel,” Commun. Nonlinear Sci. Numer. Simul., 12(6), pp. 910–919. [CrossRef]
Kothandapani, M. , and Srinivas, S. , 2008, “Non-Linear Peristaltic Transport of a Newtonian Fluid in an Inclined Asymmetric Channel Through a Porous Medium,” Phys. Lett. A, 372(8), pp. 1265–1276. [CrossRef]
Mekheimer, K. S. , and Abd elmaboud, Y. , 2008, “Peristaltic Flow of a Couple Stress Fluid in an Annulus: Application of an Endoscope,” Physica A, 387(11), pp. 2403–2415. [CrossRef]
Hayat, T. , Hina, S. , and Hendi, A. A. , 2011, “Influence of Wall Properties on Peristaltic Transport of Second Grade Fluid With Heat and Mass Transfer,” Heat Transfer-Asian Res., 40(7), pp. 577–592. [CrossRef]
Tripathi, D. , and Bég, O. A. , 2013, “Transient Magneto-Peristaltic Flow of Couple Stress Biofluids: A Magneto-Hydro-Dynamical Study on Digestive Transport Phenomena,” Math. Biosci., 246(1), pp. 72–83. [CrossRef] [PubMed]
Tripathi, D. , and Bég, O. A. , 2014, “Peristaltic Propulsion of Generalized Burgers' Fluids Through a Non-Uniform Porous Medium: A Study of Chyme Dynamics Through the Diseased Intestine,” Math. Biosci., 248, pp. 67–77. [CrossRef] [PubMed]
Ramesh, K. , 2016, “Influence of Heat and Mass Transfer on Peristaltic Flow of a Couple Stress Fluid Through Porous Medium in the Presence of Inclined Magnetic Field in an Inclined Asymmetric Channel,” J. Mol. Liq., 219, pp. 256–271. [CrossRef]
Abd-Alla, A. M. , Abo-Dahab, S. M. , and Kilicman, A. , 2015, “Peristaltic Flow of a Jeffrey Fluid Under the Effect of Radially Varying Magnetic Field in a Tube With an Endoscope,” J. Magn. Magn. Mater., 384, pp. 79–86. [CrossRef]
Ellahi, R. , and Hussain, F. , 2015, “Simultaneous Effects of MHD and Partial Slip on Peristaltic Flow of Jeffrey Fluid in a Rectangular Duct,” J. Magn. Magn. Mater., 393, pp. 284–292. [CrossRef]
Abbasi, F. M. , Hayat, T. , Ahmad, B. , and Chen, G. Q. , 2014, “Peristaltic Motion of Non-Newtonian Nanofluid in an Asymmetric Channel,” Z. Naturforsch. A, 69, pp. 451–461. http://adsabs.harvard.edu/abs/2014ZNatA..69..451A
Elmaboud, Y. A. , Mekheimer, K. S. , and Mohamed, M. S. , 2015, “Series Solution of a Natural Convection Flow for a Carreau Fluid in a Vertical Channel With Peristalsis,” J. Hydrodyn., Ser. B, 27(6), pp. 969–979. [CrossRef]
Hina, S. , Mustafa, M. , Hayat, T. , and Alsaedi, A. , 2016, “Peristaltic Transport of Powell–Eyring Fluid in a Curved Channel With Heat/Mass Transfer and Wall Properties,” Int. J. Heat Mass Transfer, 101, pp. 156–165. [CrossRef]
Abou-zeid, M. , 2016, “Effects of Thermal-Diffusion and Viscous Dissipation on Peristaltic Flow of Micropolar Non-Newtonian Nanofluid: Application of Homotopy Perturbation Method,” Results Phys., 6, pp. 481–495. [CrossRef]
Mekheimer, K. S. , and Al-Arabi, T. H. , 2003, “Nonlinear Peristaltic Transport of MHD Flow Through a Porous Medium,” Inter. Math. Sci., 2003(26), pp. 1663–1682. [CrossRef]
Eldabe, N. T. M. , El-Sayed, M. F. , Ghaly, A. Y. , and Sayed, H. M. , 2007, “Peristaltically Induced Transport of a MHD Biviscosity Fluid in a Non-Uniform Tube,” Physica A, 383(2), pp. 253–266. [CrossRef]
Kothandapani, M. , and Srinivas, S. , 2008, “On the Influence of Wall Properties in the MHD Peristaltic Transport With Heat Transfer and Porous Medium,” Phys. Lett. A, 372(25), pp. 4586–4591. [CrossRef]
Srinivas, S. , and Kothandapani, M. , 2009, “The Influence of Heat and Mass Transfer on MHD Peristaltic Flow Through a Porous Space With Compliant Walls,” Appl. Math. Comput., 213(1), pp. 197–208.
Hayat, T. , Qureshi, M. U. , and Hussain, Q. , 2009, “Effect of Heat Transfer on the Peristaltic Flow of an Electrically Conducting Fluid in a Porous Space,” Appl. Math. Model., 33(4), pp. 1862–1873. [CrossRef]
Hayat, T. , Tanveer, A. , and Alsaedi, A. , 2016, “Numerical Analysis of Partial Slip on Peristalsis of MHD Jeffery Nanofluid in Curved Channel With Porous Space,” J. Mol. Liq., 224, pp. 944–953. [CrossRef]
Ramesh, K. , and Devakar, M. , 2017, “Effect of Heat Transfer on the Peristaltic Transport of a MHD Second Grade Fluid Through a Porous Medium in an Inclined Asymmetric Channel,” Chin. J. Phys., 55(3), pp. 825–844.
Ali, N. , Hussain, Q. , Hayat, T. , and Asghar, S. , 2008, “Slip Effects on the Peristaltic Transport of MHD Fluid With Variable Viscosity,” Phys. Lett. A, 372(9), pp. 1477–1489. [CrossRef]
Srinivas, S. , Gayathri, R. , and Kothandapani, M. , 2009, “The Influence of Slip Conditions, Wall Properties and Heat Transfer on MHD Peristaltic Transport,” Comput. Phys. Commun., 180(11), pp. 2115–2122. [CrossRef]
Nadeem, S. , and Akram, S. , 2010, “Heat Transfer in a Peristaltic of MHD Fluid With Partial Slip,” Comm. Non-Linear Sci. Numer. Simul., 15(2), pp. 312–321. [CrossRef]
Hayat, T. , and Hina, S. , 2011, “Effects of Heat and Mass Transfer on Peristaltic of Williamson Fluid in a Non-Uniform Channel With Slip Conditions,” Int. J. Numer. Methods Fluids, 67(11), pp. 1590–1604. [CrossRef]
Hina, S. , Hayat, T. , and Alsaedi, A. , 2014, “Slip Effects on MHD Peristaltic Motion With Heat and Mass Transfer,” Arabian J. Sci. Eng., 39(2), pp. 593–603. [CrossRef]
Kamel, M. H. , Eldesoky, I. M. , Maher, B. M. , and Abumandour, R. M. , 2015, “Slip Effects on Peristaltic Transport of a Particle-Fluid Suspension in a Planar Channel,” Appl. Bionics Biomech., 2015, p. 703574. [CrossRef] [PubMed]
Eldabe, N. T. M. , Moatimid, G. M. , Hassan, M. A. , and Mostapha, D. R. , 2016, “Effects of Partial Slip on Peristaltic Flow of a Sisko Fluid With Mild Stenosis Through a Porous Medium,” Appl. Math. Inf. Sci., 10(2), pp. 673–687. [CrossRef]
Hayat, T. , Shafique, M. , Tanveer, A. , and Alsaedi, A. , 2016, “Radiative Peristaltic Flow of Jeffrey Nanofluid With Slip Conditions and Joule Heating,” PLoS One, 11(2), p. e0148002. [CrossRef] [PubMed]
Ramesh, K. , 2016, “Effects of Slip and Convective Conditions on the Peristaltic Flow of Couple Stress Fluid in an Asymmetric Channel Through Porous Medium,” Comput. Methods Prog. Biomed., 135, pp. 1–14. [CrossRef]
Hayat, T. , Nawaz, S. , Alsaedi, A. , and Rafiq, M. , 2016, “Analysis of Entropy Generation in Mixed Convective Peristaltic Flow of Nanofluid,” Entropy, 18(10), p. 355.
Ali, N. , Javid, K. , and Sajid, M. , 2016, “Simulations of Peristaltic Slip-Flow of Hydromagnetic Bio-Fluid in a Curved Channel,” AIP Adv., 6(2), p. 025111. [CrossRef]
Hina, S. , 2016, “MHD Peristaltic Transport of Eyring–Powell Fluid With Heat/Mass Transfer, Wall Properties and Slip Conditions,” J. Magn. Magn. Mater., 404, pp. 148–158. [CrossRef]
Javed, M. , Hayat, T. , Mustafa, M. , and Ahmad, B. , 2016, “Velocity and Thermal Slip Effects on Peristaltic Motion of Walters-B Fluid,” Int. J. Heat Mass Transfer, 96, pp. 210–217. [CrossRef]
Shit, G. C. , and Ranjit, N. K. , 2016, “Role of Slip Velocity on Peristaltic Transport of Couple Stress Fluid Through an Asymmetric Non-Uniform Channel: Application to Digestive System,” J. Mol. Liq., 221, pp. 305–315. [CrossRef]
Chamkha, A. J. , and Aly, A. M. , 2010, “MHD Free Convection Flow of a Nanofluid Past a Vertical Plate in the Presence of Heat Generation or Absorption Effects,” Chem. Eng. Commun., 198(3), pp. 425–441. [CrossRef]
Chamkha, A. J. , and Nada, E. A. , 2012, “Mixed Convection Flow in Single- and Double-Lid Driven Square Cavities Filled With Water-Al2O3 Nanofluid: Effect of Viscosity Models,” Eur. J. Mech. B, 36, pp. 82–96. [CrossRef]
Sheikholeslami, M. , and Chamkha, A. J. , 2016, “Flow and Convective Heat Transfer of a Ferro-Nanofluid in a Double-Sided Lid-Driven Cavity With a Wavy Wall in the Presence of a Variable Magnetic Field,” Numer. Heat Transfer, Part A, 69(10), pp. 1186–1200. [CrossRef]
Takhar, H. S. , Chamkha, A. J. , and Nath, G. , 2001, “Unsteady Three-Dimensional MHD-Boundary-Layer Flow Due to the Impulsive Motion of a Stretching Surface,” Acta Mech., 146(1–2), pp. 59–71. [CrossRef]
Noghrehabadi, A. , Pourrajab, R. , and Ghalambaz, M. , 2012, “Effect of Partial Slip Boundary Condition on the Flow and Heat Transfer of Nanofluids Past Stretching Sheet Prescribed Constant Wall Temperature,” Int. J. Therm. Sci., 54, pp. 253–261. [CrossRef]
Noghrehabadi, A. , Ghalambaz, M. , and Ghanbarzadeh, A. , 2014, “Effects of Variable Viscosity and Thermal Conductivity on Natural Convection of Nanofluids Past a Vertical Plate in Porous Media,” J. Mech., 30(3), pp. 265–275. [CrossRef]
Noghrehabadi, A. , Ghalambaz, M. , Ghalambaz, M. , and Ghanbarzadeh, A. , 2012, “Comparing Thermal Enhancement of Ag-Water and SiO2-Water Nanofluids Over an Isothermal Stretching Sheet With Suction or Injection,” J. Comput. Appl. Res. Mech. Eng., 2(1), pp. 37–49.
Ghalambaz, M. , Sheremet, M. A. , and Pop, I. , 2015, “Free Convection in a Parallelogrammic Porous Cavity Filled With a Nanofluid Using Tiwari and Das' Nanofluid Model,” PLoS One, 10(5), p. e0126486. [CrossRef] [PubMed]
Basak, T. , and Chamkha, A. J. , 2012, “Heatline Analysis on Natural Convection for Nanofluids Confined Within Square Cavities With Various Thermal Boundary Conditions,” Int. J. Heat Mass Transfer, 55(21–22), pp. 5526–5543. [CrossRef]
Umavathi, J. C. , Kumar, J. P. , and Chamkha, A. J. , 2005, “Mixed Convection in a Vertical Porous Channel,” Transp. Porous Media, 61(3), pp. 315–335. [CrossRef]
Chamkha, A. J. , Grosan, T. , and Pop, I. , 2002, “Fully Developed Free Convection of a Micropolar Fluid in a Vertical Channel,” Int. Commun. Heat Mass Transfer, 29(8), pp. 1119–1127.
Umavathi, J. C. , Chamkha, A. J. , Mateen, A. , and Al-Mudhaf, A. , 2005, “Unsteady Two-Fluid Flow and Heat Transfer in a Horizontal Channel,” Heat Mass Transfer, 42(2), pp. 81–90. [CrossRef]
Chamkha, A. J. , 2002, “On Laminar Hydromagnetic Mixed Convection Flow in a Vertical Channel With Symmetric and Asymmetric Wall Heating Conditions,” Int. J. Heat Mass Transf., 45(12), pp. 2509–2525.
Al-Mudhaf, A. , and Chamkha, A. J. , 2005, “Similarity Solutions for MHD Thermosolutal Marangoni Convection Over a Flat Surface in the Presence of Heat Generation or Absorption Effects,” Heat Mass Transfer, 42(2), pp. 112–121. [CrossRef]
Sheikholeslami, M. , and Chamkha, A. J. , 2016, “Electrohydrodynamic Free Convection Heat Transfer of a Nanofluid in a Semi-Annulus Enclosure With a Sinusoidal Wall,” Numer. Heat Transfer, Part A, 69(7), pp. 781–793. [CrossRef]
Ismael, M. A. , Pop, I. , and Chamkha, A. J. , 2014, “Mixed Convection in a Lid-Driven Square Cavity With Partial Slip,” Int. J. Therm. Sci., 82, pp. 47–61. [CrossRef]
Rashad, A. M. , Ismael, M. A. , Chamkha, A. J. , and Mansour, M. A. , 2016, “MHD Mixed Convection of Localized Heat Source/Sink in a Nanofluid-Filled Lid-Driven Square Cavity With Partial Slip,” J. Taiwan Inst. Chem. Eng., 68, pp. 173–186. [CrossRef]
Magyari, E. , and Chamkha, A. J. , 2008, “Exact Analytical Results for the Thermosolutal MHD Marangoni Boundary Layers,” Int. J. Therm. Sci., 47(7), pp. 848–857. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Geometry of the problem

Grahic Jump Location
Fig. 5

Variation of different parameters on φ when t= 0.1: (a) E1= 0.2; E2= 0.1; E3= 0.2; ε= 0.15; x= 0.2. (b)E1= 0.2; E2= 0.1; E3= 0.2; ε= 0.1; x= −0.2; t= 0.1; M= 1.0. (c) E1= 0.2; E2= 0.1; E3= 0.1; ε= 0.15; x= 0.2; t= 0.1; M= 1.5. (d) E1= 0.1; E2= 0.2; E3= 0.1; ε= 0.1; x= 0.2; t= 0.3; M= 1.0. (e) E1= 0.02; E2= 0.01; E3=0.01; ε= 2.2; x= −0.2; t= 0.3; M= 0.2. (f) E1= 0.2; E2= 0.1; E3= 0.2; ε= 0.15; x= 0.2; t= 0.1; M= 1.0. (g)ε= 0.13; x= 0.2; t= 0.1; M= 1.0.

Grahic Jump Location
Fig. 6

Variation of different parameters on Z when (a) Br= 2; ε= 0.15. (b) Br= 1; ε= 0.2; M= 2. (c) M= 1; ε= 0.15. (d)Br= 2; E1= 0.03; E2= 0.01; E3= 0.2; ε= 0.2; α1= 0.01; M= 1.2. (e) Br= 3; Pr= 1; E1= 0.2; E2= 0.1; E3= 0.1; ε=0.15; M= 2. (f) ε= 0.15; M= 1; Br= 2.

Grahic Jump Location
Fig. 4

Variation of different parameters on θ when (a) Br= 1; E2= 0.1; E3= 0.02; x= 0.2. (b) Br= 1; E2= 0.1; M= 1; E3= 0.01; x= −0.2. (c) E2= 0.1; E3= 0.01; x= 0.2; M= 1. (d) Br= 2; E2= 0.2; E3= 0.1; x= −0.2; M= 1. (e) Br= 1; E2= 0.1; E3= 0.02; x= 0.2; α1= 0.1; M= 1.5. (f) Br= 1; E2= 0.1; E3= 0.02; x= 0.2; M= 1. (g) Br= 1; x= 0.2; M= 1.5.

Grahic Jump Location
Fig. 3

Variation of different parameters on u when (a) E1= 0.03; E2= 0.05; E3= 0.5. (b) E1= 0.02; E2= 0.05; E3= 0.5; M= 0.5. (c) E1= 0.03; E2= 0.05; E3= 0.5; M= 1. (d) E1= 0.02; E2= 0.05; E3= 0.5; α1= 0.01; M= 0.5. (e) E1= 0.02; E2= 0.05; E3= 0.5; α1= 0.01; ε= 0.15; M= 0.5. (f) α1= 0.01; M= 0.5.

Grahic Jump Location
Fig. 2

Streamlines for different values of (a) β1 and (b) of α1

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In