Research Papers

Effects of Metal Foam Porosity, Pore Size, and Ligament Geometry on Fluid Flow

[+] Author and Article Information
Beshoy Morkos

Department of Mechanical and Aerospace
Florida Institute of Technology,
150 West University Boulevard,
Melbourne, FL 32901
e-mail: bmorkos@fit.edu

Surya Venkata Sumanth Dochibhatla

Department of Mechanical and Aerospace
Florida Institute of Technology,
150 West University Boulevard,
Melbourne, FL 32901
e-mail: sdochibhatla2015@my.fit.edu

Joshua D. Summers

Department of Mechanical Engineering,
Clemson University,
203 Fluor Daniel Building,
Clemson, SC 29634
e-mail: jsummer@clemson.edu

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received July 6, 2017; final manuscript received November 6, 2017; published online April 10, 2018. Assoc. Editor: Sandip Mazumder.

J. Thermal Sci. Eng. Appl 10(4), 041007 (Apr 10, 2018) (9 pages) Paper No: TSEA-17-1240; doi: 10.1115/1.4039302 History: Received July 06, 2017; Revised November 06, 2017

This paper explores the effects of porosity, pore size, and ligament geometry in metal foams on its fluid flow capability. The motivation to understand this phenomenon stems from exploring the use of metal foams for thermal energy dissipation applications where both thermal convection and fluid flow are desired. The goal of this research is to identify the optimum configuration of metal foam design parameters for maximum flow. To study the impacts of said parameters, an experimental study of air flow through open cell metal foams is performed. Seven foam blocks were used in this partial factorial study, representing varying materials, pore size, and porosity. Wind tunnel tests are performed to measure the velocity of air flowing through the foam as a function of the free stream air velocity. Multinomial logit regression was performed to analyze the effects of the design parameters on velocity loss through the foam. Results indicate that effect of porosity on velocity loss is significant while that of pore size is insignificant. However, one test result did not fit this trend and further investigation revealed that this was due to varying ligament geometry in outlier metal foam. The cross section shape of the ligaments varied from a convex triangular shape to a triangle shape with concave surfaces, increasing the amount of drag in the airflow through the sample.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Krishnan, S. , Murthy, J. Y. , and Garimella, S. V. , 2006, “Direct Simulation of Transport in Open-Cell Metal Foam,” ASME J. Heat Transfer, 128(8), pp. 793–799. [CrossRef]
Jo, C. , Fu, J. , and Naguib, H. E. , 2005, “Constitutive Modeling for Mechanical Behavior of PMMA Microcellular Foams,” Polymer, 46(25), pp. 11896–11903. [CrossRef]
Ahmed, A. , Fahim, A. , and Naguib, H. , 2008, “A Study on the Design and Mechanical Adhesion of Polymer Foam-Metal Joints,” ASME J. Eng. Mater. Technol., 130(3), p. 031011. [CrossRef]
Gibson, J. L. , and Ashby, M. F. , 1997, Cellular Solids-Structure and Properties, Cambridge University Press, Cambridge, UK. [CrossRef]
Kabir, M. E. , Saha, M. C. , and Jeelani, S. , 2006, “Tensile and Fracture Behavior of Polymer Foams,” Mater. Sci. Eng., 429(1–2), pp. 225–235. [CrossRef]
McIntyre, A. , and Anderton, G. E. , 1979, “Fracture Properties of a Rigid Polyurethane Foam Over a Range of Densities,” Polymer, 20(2), pp. 247–253. [CrossRef]
Kanny, K. , Mahfuz, H. , Thomas, T. , and Jeelani, S. , 2004, “Static and Dynamic Characterization of Polymer Foam Under Shear Loads,” J. Compos. Mater., 38(8), pp. 629–639. [CrossRef]
Subhash, G. , Liu, Q. , and Gao, X. L. , 2006, “Quasistatic and High Rate Strain Rate Uniaxial Compressive Response of Polymeric Structural Foams,” Int. J. Impact Eng., 32(7), pp. 1113–1126. [CrossRef]
Huang, W. H. , 2003, “A Simple Approach to Estimate Failure Surface of Polymer and Aluminum Foams Under Multiaxial Loads,” Int. J. Mech. Sci., 45(9), pp. 1531–1540. [CrossRef]
Zhang, Y. , Rodrigue, D. , and Kadi, A. A. , 2003, “High Density Polyethylene Foams—IV: Flexural and Tensile Moduli of Structural Foams,” J. Appl. Polym. Sci., 90(8), pp. 2139–2149. [CrossRef]
Wouterson, E. M. , Boey, F. Y. C. , and Hu, X. , 2004, “Fracture and Impact Toughness of Syntactic Foams,” J. Cell. Plast., 40(2), pp. 145–154. [CrossRef]
Salazar, J. M. G. , Barrena, M. I. , Morales, G. , Matesanz, N. , and Merino, N. , 2006, “Compression Strength and Wear Resistance of Ceramic Foams–Polymer Composites,” Mater. Lett., 60(13–14), pp. 1687–1692. [CrossRef]
Zhou, J. , Gao, Z. , Cuitino, A. M. , and Soboyejo, W. O. , 2005, “Fatigue of As-Fabricated Open Cell Aluminum Foams,” ASME J. Eng. Mater. Technol., 127(1), pp. 40–45. [CrossRef]
Morkos, B. , Shankar, P. , Teegavarapu, S. , Michaelraj, A. , Summers, J. D. , and Obieglo, A. , 2009, “Conceptual Development of Automotive Forward Lighting System Using White Light Emitting Diodes,” SAE Int. J. Passenger Cars - Electron. Electr. Syst., 2(1), pp. 201–211. [CrossRef]
Dukhan, N. , Bagci, O. , and Ozdemir, M. , 2015, “Thermal Development in Open-Cell Metal Foam: An Experiment With Constant Wall Heat Flux,” Int. J. Heat Mass Transfer, 85, pp. 852–859. [CrossRef]
Hess, T. , Morkos, B. , Bowman, M. , and Summers, J. D. , 2011, “Cross Analysis of Metal Foam Design Parameters for Achieving Desired Fluid Flow,” ASME Paper No. IMECE2011-64916.
Zhao, C. Y. , 2012, “Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells,” Int. J. Heat Mass Transfer, 55(13–14), pp. 3618–3632. [CrossRef]
Paek, J. W. , Kang, B. H. , Kim, S. Y. , and Hyun, J. M. , 2000, “Effective Thermal Conductivity and Permeability of Aluminum Foam Materials,” Int. J. Thermophys., 21(2), pp. 453–464. [CrossRef]
Salimi Jazi, H. R. , Mostaghimi, J. , Chandra, S. , Persin, L. , and Coyle, T. , 2010, “Spray-Formed, Metal-Foam Heat Exchangers for High Temperature Applications,” ASME J. Therm. Sci. Eng. Appl., 1(3), p. 031008. [CrossRef]
Lu, T. J. , 1999, “Heat Transfer Efficiency of Metal Honeycombs,” Int. J. Heat Mass Transfer, 42(11), pp. 2031–2040. [CrossRef]
Seepersad, C. , Allen, J. K. , McDowell, D. L. , and Misstree, F. , 2008, “Multifunctional Topology Design of Cellular Material Structures,” ASME J. Mech. Des., 130(3), p. 031404. [CrossRef]
Ashby, M. F. , Evans, A. G. , Fleck, N. A. , Gibson, L. J. , Hutchingson, J. W. , and Wadley, H. N. , 2000, Metal Foams a Design Guide, Butterworth-Heinemann, Oxford, UK.
Baril, E. , Mostafid, A. , Lefebvre, L.-P. , and Medraj, M., 2010, “Experimental Demonstration of Entrance/Exit Effects on the Permeability Measurements of Porous Materials,” Adv. Eng. Mater., 10(9), pp. 889–894. [CrossRef]
Mahjooba, S. , and Vafai, K. , 2008, “A Synthesis of Fluid and Thermal Transport Models for Metal,” Int. J. Heat Mass Transfer, 51(15–16), pp. 3701–3711. [CrossRef]
Tianjian, L. , 2002, “Ultralight Porous Metals: From Fundamentals to Applications,” Acta Mech. Sin. Chin. J. Mech., 18(5), pp. 457–479. [CrossRef]
Dukhan, N. , and Patel, K. P. , 2010, “Entrance and Exit Effects for Fluid Flow in Metal Foam,” AIP Conf. Proc., 1254, pp. 299–304.
Dukhan, N. , Quiñones-Ramos, P. D. , Cruz-Ruiz, E. , Vélez-Reyes, M. , and Scott, E. P. , 2005, “One-Dimensional Heat Transfer Analysis in Open-Cell,” Int. J. Heat Mass Transfer, 48(25–26), pp. 5112–5120. [CrossRef]
Kaviany, M. , 1995, Principles of Heat Transfer in Porous Media, 2nd ed., Springer, New York. [CrossRef]
Tadrist, L. , Miscevic, M. , Rahli, O. , and Topina, F. , 2004, “About the Use of Fibrous Materials in Compact Heat Exchangers,” Exp. Therm. Fluid Sci., 28(2–3), pp. 193–199. [CrossRef]
Boomsma, K. , and Poulikakos, D. , 2002, “The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams,” ASME J. Fluids Eng., 124(1), pp. 263–273. [CrossRef]
Hunt, M. L. , and Tien, C. L. , 1988, “Effect of Thermal Dispersion in Forced Convection in Fibrous Media,” Int. J. Heat Mass Transfer, 31(2), pp. 301–309. [CrossRef]
Mantle, W. J. , and Chang, W. S. , 1991, “Effective Thermal Conductivity of Sintered Metal Fibers,” J. Thermophys. Heat Transfer, 5(4), pp. 545–549. [CrossRef]
Farsad, E. , Abbasi, S. P. , and Zabihi, M. S. , 2014, “Fluid Flow and Heat Transfer in a Novel Microchannel Heat Sink Partially Filled With Metal Foam Medium,” ASME J. Therm. Sci. Eng. Appl., 6(2), p. 021011. [CrossRef]
Jin, L. W. , Leong, K. C. , Pranoto, I. , Li, H. Y. , and Chai, J. C. , 2011, “Experimental Study of a Two-Phase Thermosyphon With Porous Graphite Foam Insert,” ASME J. Therm. Sci. Eng. Appl., 3(2), p. 024502. [CrossRef]
Bayomy, A. M. , and Saghir, M. Z. , 2017, “Heat Development and Comparison Between the Steady and Pulsating Flows Through Aluminum Foam Heat Sink,” ASME J. Therm. Sci. Eng. Appl., 9(3), p. 031006. [CrossRef]
Phelan, R. , Weaire, D. , and Brakke, K. , 1995, “Computation of Equilibrium Foam Structures Using the Surface Evolver,” Exp. Math., 4(3), pp. 181–192. [CrossRef]
Alazmi, B. , and Vafai, K. , 2000, “Analysis of Variants Within the Porous Media Transport Models,” ASME J. Heat Transfer, 122(2), pp. 303–326. [CrossRef]
Yu, Q. , Straatman, A. G. , and Thompson, B. E. , 2006, “Carbon-Foam Finned Tubes in Air-Water Heat Exchangers,” J. Appl. Therm. Energy, 26(2–3), pp. 131–143. [CrossRef]
Ohser, J. , Redenbach, C. , and Moghiseh, A. , 2014, “The PPI Value of Open Foams and Its Estimation Using Image Analysis,” Int. J. Mater. Res., 105(7), pp. 671–678. [CrossRef]
Redenbach, C. , Ohser, J. , and Moghiseh, A. , 2016, “Second-Order Characteristics of the Edge System of Random Tessellations and the PPI Value of Foams,” Methodol. Comput. Appl. Probab., 18(1), pp. 59–79. [CrossRef]
ERG Materials & Aerospace, 2011, “The Basics of Duocel Foam,” ERG Materials & Aerospace, Oakland, CA, accessed Mar. 1, 2018, http://www.ergaerospace.com/Descriptors.htm
Weinberger, C. , Vetter, S. , Tiemann, M. , and Wagner, T. , 2016, “Assessment of the Density of (Meso)Porous Materials From Standard Volumetric Physisorption Data,” Microporous Mesoporous Mater., 223(15), pp. 53–57. [CrossRef]
Álvarez Hernández, Á. R. R. , 2005, “Combined Flow and Heat Transfer Characterization of Open Cell Aluminum Foams,” Master thesis, University of Puerto Rico, Mayaguez, PR.
Ofuchia, K. , and Kuniia, D. , 1965, “Heat-Transfer Characteristics of Packed Beds With Stagnant Fluids,” Int. J. Heat Mass Transfer, 8(5), pp. 749–757. [CrossRef]
Hadleya, G. R. , 1986, “Thermal Conductivity of Packed Metal Powders,” Int. J. Heat Mass Transfer, 29(6), pp. 909–920. [CrossRef]
Lu, T. J. , Stone, H. A. , and Ashby, M. F. , 1998, “Heat Transfer in Open-Cell Metal Foams,” Acta Mater., 46(10), pp. 3619–3635. [CrossRef]
Gibson, L. J. , Ashby, M. F. , and Harley, B. A. , 2010, Cellular Materials in Nature and Medicine, Cambridge University Press, Cambridge, UK.
Shen, H. , Liu, X. , Yan, H. , Xie, G. , and Sunden, B. , 2017, “Enhanced Thermal Performance of Internal Y-Shaped Bifurcation Microchannel Heat Sinks With Metal Foams,” ASME J. Therm. Sci. Eng. Appl., 10(1), p. 011001. [CrossRef]
Calmidi, V. V. , and Mahajan, R. L. , 2000, “Forced Convection in High Porosity Metal Foams,” ASME J. Heat Transfer, 122(3), pp. 557–565. [CrossRef]
Bhattacharya, A. , Calmidi, V. V. , and Mahajan, R. L. , 2002, “Thermophysical Properties of High Porosity Metal Foams,” Int. J. Heat Mass Transfer, 45(5), pp. 1017–1031. [CrossRef]
Boomsma, K. , and Poulikakos, D. , 2001, “On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam,” Int. J. Heat Mass Transfer, 44(4), pp. 827–836. [CrossRef]
Keyes, R. W. , 1984, “Heat Transfer in Forced Convection Through Fins,” IEEE Trans. Electron Devices, 31(9), pp. 1218–1221. [CrossRef]
Bejan, A. , and York, N. , eds., 2013, Convection Heat Transfer, 2nd ed., Wiley, Hoboken, NJ. [CrossRef]
Bastawros, A. F. , Evans, A. G. , and Stone, H. A. , 1998, Evaluation of Cellular Metal Heat Transfer Media, Harvard University, Cambridge, MA.
Cicala, G. , Cirillo, L. , Diana, A. , Manca, O. , and Nardini, S. , 2016, “Experimental Evaluation of Fluid Dynamic and Thermal Behaviors in Compact Heat Exchanger With Aluminum Foam,” Energy Procedia, 101, pp. 1103–1110. [CrossRef]
Lu, W. , Zhao, C. Y. , and Tassou, S. A. , 2006, “Thermal Analysis on Metal-Foam Filled Heat Exchangers—Part I: Metal-Foam Filled Pipes,” Int. J. Heat Mass Transfer, 49(15–16), pp. 2751–2761. [CrossRef]
Odabaee, M. , Hooman, K. , and Gurgenci, H. , 2011, “Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Cylinder in Cross-Flow,” Transp. Porous Media, 86(3), pp. 911–923. [CrossRef]
Dukhan, N. , 2006, “Correlations for the Pressure Drop for Flow Through Metal Foam,” Exp. Fluids, 41(4), pp. 665–672. [CrossRef]
Jung, A. , Lach, E. , and Diebels, S. , 2014, “New Hybrid Foam Materials for Impact Protection,” Int. J. Impact Eng., 64, pp. 30–38. [CrossRef]
Zhao, H. , and Gary, G. , 1998, “Crushing Behaviour of Aluminum Honeycombs Under Impact Loading,” Int. J. Impact Eng., 21(10), pp. 827–836. [CrossRef]
Hu, H. , Weng, X. , Zhuang, D. , Ding, G. , Lai, Z. , and Xu, X. , 2016, “Heat Transfer and Pressure Drop Characteristics of Wet Air Flow in Metal Foam Under Dehumidifying Conditions,” Appl. Therm. Eng., 93(25), pp. 1124–1134. [CrossRef]
Bai, W. , Yuan, X. , and Liu, X. , 2017, “Numerical Investigation on the Performances of Automotive Thermoelectric Generator Employing Metal Foam,” Appl. Therm. Eng., 124, pp. 178–184. [CrossRef]
Seok, J. , Chun, K. M. , Song, S. , and Lee, J. , 2014, “An Empirical Study of the Dry Soot Filtration Behavior of a Metal Foam Filter on a Particle Number Concentration Basis,” Energy, 76(1), pp. 949–957. [CrossRef]
Mutlu, I. , 2016, “Synthesis and Characterization of Ti–Co Alloy Foam for Biomedical Applications,” Trans. Nonferrous Met. Soc. China, 26(1), pp. 126–137. [CrossRef]
Kalyanasundaram, V. , and Lewis, K. , 2014, “A Function Based Approach for Product Integration,” ASME J. Mech. Des., 136(4), p. 041002. [CrossRef]
Goede, M. , Stehlin, M. , Rafflenbeu, L. , Kopp, G. , and Beeh, E. , 2009, “Super Light Car—Lightweight Construction Thanks to a Multi-Material Design and Function Integration,” Eur. Transp. Res. Rev., 1(1), pp. 5–10. [CrossRef]
Messer, M. , Panchal, J. H. , Allen, J. , McDowell, D. L. , and Mistree, F. , 2007, “A Function-Based Approach for Integrated Design and Material and Product Concepts,” ASME Paper No. DETC2007-35743.
Boothroyd, G. , and Dewhurst, P. , 1983, “Design for Assembly Handbook,” University of Massachusetts, Amherst, MA.
Mahmood, S. , 2013, “Empirical Study of Software Component Integration Process Activities,” IET Software, 7(2), pp. 65–75. [CrossRef]
Zaghi, S. , Muscari, R. , and Mascio, A. D. , 2016, “Assessment of Blockage Effects in Wind Tunnel Testing of Wind Turbines,” J. Wind Eng. Ind. Aerodyn., 154, pp. 1–9. [CrossRef]


Grahic Jump Location
Fig. 1

Representative metal foam structure at (a) 50× magnification and (b) macroscale

Grahic Jump Location
Fig. 2

Schematic of wind tunnel testing setup

Grahic Jump Location
Fig. 3

Effect of porosity on velocity loss through foam samples (sample A4 removed)

Grahic Jump Location
Fig. 4

Downstream velocity as a function of upstream velocity for each foam sample

Grahic Jump Location
Fig. 5

Effect of porosity on velocity loss through foam samples

Grahic Jump Location
Fig. 6

Effect of pore size on airflow loss through foam samples

Grahic Jump Location
Fig. 7

Comparison of ligament geometry (resolution of scale = 1/64 in)

Grahic Jump Location
Fig. 8

Ligament geometry in sample B1 (aluminum, 10 ppi, ε = 0.930)

Grahic Jump Location
Fig. 9

Ligament geometry in sample B2 (aluminum, 20 ppi, ε = 0.930)

Grahic Jump Location
Fig. 10

Ligament geometry in sample B3 (aluminum, 40 ppi, ε = 0.930)

Grahic Jump Location
Fig. 11

Schematic representation of ligament cross section differences

Grahic Jump Location
Fig. 12

Regression fitted plot of velocity loss versus porosity including 95% confidence (inner) and predictive (outer) band




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In