0
Research Papers

Slip and Joule Heating Effects on Peristaltic Transport in an Inclined Channel

[+] Author and Article Information
Tasawar Hayat

Department of Mathematics,
Quaid-I-Azam University,
Islamabad 44000, Pakistan;
NAAM Research Group,
Faculty of Science,
Department of Mathematics,
King Abdulaziz University,
Jeddah 21589, Saudi Arabia

Sadia Ayub

Department of Mathematics,
Quaid-I-Azam University,
Islamabad 44000, Pakistan
e-mail: sadiayub91@gmail.com

Anum Tanveer

Department of Mathematics,
Quaid-I-Azam University,
Islamabad 44000, Pakistan

Ahmed Alsaedi

NAAM Research Group,
Faculty of Science,
Department of Mathematics,
King Abdulaziz University,
Jeddah 21589, Saudi Arabia

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received August 17, 2017; final manuscript received October 5, 2017; published online February 6, 2018. Assoc. Editor: Sandip Mazumder.

J. Thermal Sci. Eng. Appl 10(3), 031004 (Feb 06, 2018) (8 pages) Paper No: TSEA-17-1303; doi: 10.1115/1.4038564 History: Received August 17, 2017; Revised October 05, 2017

This study investigates peristaltic transport of Sutterby fluid in an inclined channel. Applied magnetic field is also inclined. Thermal radiation, Joule heating, and Soret and Dufour effects are present. The channel boundaries satisfy wall compliant and partial slip conditions. The problem description is simplified by employing long wavelength and low Reynolds number assumptions. Graphical solutions for axial velocity, temperature, concentration, and heat transfer coefficient are obtained via built-in numerical approach NDSolve. Similar response of velocity and concentration profiles has been recorded for larger inclination. The results reveal temperature drop with larger thermal radiation. Here, radiation and thermal slip increase heat transfer rate.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bayliss, W. M. , and Starling, E. H. , 1899, “The Movements and Innervation of the Small Intestine,” J. Physiol., 24(2), pp. 99–143. [CrossRef] [PubMed]
Latham, T. W. , 1966, “Fluid Motion in Peristaltic Pump,” M.S. thesis, MIT, Cambridge, MA.
Shapiro, A. H. , Jaffrin, M. Y. , and Weinberg, S. L. , 1969, “Peristaltic Pumping With Long Wavelengths at Low Reynolds Number,” ASME J. Fluid. Mech., 37(4), pp. 799–825. [CrossRef]
Hayat, T. , Tanveer, A. , and Alsaedi, A. , 2016, “Numerical Analysis of Partial Slip on Peristalsis of MHD Jeffery Nanofluid in Curved Channel With Porous Space,” J. Mol. Liq., 224(4), pp. 944–953. [CrossRef]
Tripathi, D. , Bhushan, S. , and Bég, O. A. , 2017, “Unsteady Viscous Flow Driven by the Combined Effects of Peristalsis and Electro-Osmosis,” Alex. Eng. J., in press.
Tripathi, D. , Sharma, A. , Bég, O. A. , and Tiwari, A. , 2017, “Electrothermal Transport in Biological Systems: An Analytical Approach for Electrokinetically Modulated Peristaltic Flow,” ASME J. Therm. Sci. Eng. Appl., 9(4), p. 041010. [CrossRef]
Abbas, M. A. , Bai, Y. Q. , Rashidi, M. M. , and Bhatti, M. M. , 2016, “Application of Drug Delivery in Magnetohydrodynamics Peristaltic Blood Flow of Nanofluid in a Non-Uniform Channel,” J. Mech. Med. Biol., 16(4), p. 1650052.
Hayat, T. , Bibi, A. , Yasmin, H. , and Ahmad, B. , 2016, “Simultaneous Effects of Hall Current and Homogeneous/Heterogeneous Reactions on Peristalsis,” J. Taiwan Inst. Chem. Eng., 58, pp. 28–38. [CrossRef]
Srinivas, S. , and Muthuraj, R. , 2011, “Effects of Chemical Reaction and Space Porosity on MHD Mixed Convective Flow in a Vertical Asymmetric Channel With Peristalsis,” Math. Comput. Model., 54(5–6), pp. 1213–1227. [CrossRef]
Hayat, T. , Tanveer, A. , Yasmin, H. , and Alsaadi, F. , 2014, “Effects of Convective Conditions and Chemical Reaction on Peristaltic Flow of Eyring-Powell Fluid,” Appl. Bionics Biomech., 11(4), pp. 221–233. [CrossRef]
Mitra, T. K. , and Prasad, S. N. , 1973, “On the Influence of Wall Properties and Poiseuille Flow in Peristalsis,” J. Biomech., 6(6), pp. 681–693. [CrossRef] [PubMed]
Sinha, A. , Shit, G. C. , and Ranjit, N. K. , 2015, “Peristaltic Transport of MHD Low and Heat Transfer in an Asymmetric Channel: Effects of Variable Viscosity, Velocity Slip and Temperature Jump,” Alex. Eng. J., 54(3), pp. 691–704. [CrossRef]
Hayat, T. , Zahir, H. , Tanveer, A. , and Alsaedi, A. , 2017, “Radial Magnetic Field and Convective Condition Aspects for the Peristalsis in a Curved Channel With Compliant Properties,” Eur. Phy. J. Plus, 132(1), p. 12.
Bhatti, M. M. , Abbas, M. A. , and Rashidi, M. M. , 2016, “Combine Effects of Magnetohydrodynamics (MHD) and Partial Slip on Peristaltic Blood Flow of Ree–Eyring Fluid With Wall Properties,” Eng. Sci. Tech., Int. J., 19(3), pp. 1497–1502. [CrossRef]
Hayat, T. , Rafiq, M. , and Ahmad, B. , 2016, “Influences of Rotation and Thermophoresis on MHD Peristaltic Transport of Jeffrey Fluid With Convective Conditions and Wall Properties,” J. Magn. Magn. Mater., 410, pp. 89–99. [CrossRef]
Hina, S. , 2016, “MHD Peristaltic Transport of Eyring–Powell Fluid With Heat/Mass Transfer, Wall Properties and Slip Conditions,” J. Magn. Magn. Mater., 404, pp. 148–158. [CrossRef]
Srikanth, D. , Reddy, J. V. R. , Jain, S. , and Kale, A. , 2015, “Unsteady Polar Fluid Model of Blood Flow Through Tapered ω-Shape Stenosed Artery: Effects of Catheter and Velocity Slip,” Ain Shams Eng. J., 6(3), pp. 1093–1104. [CrossRef]
Hayat, T. , Zahir, H. , Mustafa, M. , and Alsaedi, A. , 2016, “Peristaltic Flow of Sutterby Fluid in a Vertical Channel With Radiative Heat Transfer and Compliant Walls: A Numerical Study,” Results Phys., 6, pp. 805–810. [CrossRef]
Ramesh, K. , 2016, “Effects of Slip and Convective Conditions on the Peristaltic Flow of Couple Stress Fluid in an Asymmetric Channel Through Porous Medium,” Comput. Methods Prog. Biomed., 135, pp. 1–14. [CrossRef]
Hayat, T. , Shafique, M. , Tanveer, A. , and Alsaedi, A. , 2016, “Radiative Peristaltic Flow of Jeffrey Nanofluid With Slip Conditions and Joule Heating,” PLoS One, 11(2), e0148002.
Hayat, T. , Shafique, M. , Tanveer, A. , and Alsaedi, A. , 2017, “Slip and Joule Heating Effects on Radiative Peristaltic Flow of Hyperbolic Tangent Nanofluid,” Int. J. Heat Mass Transfer, 112, pp. 559–567. [CrossRef]
Khan, A. U. , Nadeem, S. , and Hussain, S. T. , 2016, “Phase Flow Study of MHD Nanofluid With Slip Effects on Oscillatory Oblique Stagnation Point Flow in View of Inclined Magnetic Field,” J. Mol. Liq., 224(Pt. B), pp. 1210–1219. [CrossRef]
Dutta, D. , 2016, “Effect of Channel Sidewalls on Joule Heating Induced Sample Dispersion in Rectangular Ducts,” Int. J. Heat Mass Transfer, 93, pp. 529–537. [CrossRef]
Hayat, T. , Nisar, Z. , Ahmad, B. , and Yasmin, H. , 2015, “Simultaneous Effects of Slip and Wall Properties on MHD Peristaltic Motion of Nanofluid With Joule Heating,” J. Magn. Magn. Mater., 395, pp. 48–58. [CrossRef]
Machireddy, G. R. , and Kattamreddy, V. R. , 2016, “Impact of Velocity Slip and Joule Heating on MHD Peristaltic Flow Through a Porous Medium With Chemical Reaction,” J. Niger. Math. Soc., 35(1), pp. 227–244.
Hayat, T. , Quratulain , Alsaedi, A. , Rafiq, M. , and Ahmad, B. , 2016, “Joule Heating and Thermal Radiation Effects on Peristalsis in Curved Configuration,” Results Phys., 6, pp. 1088–1095. [CrossRef]
Hayat, T. , Nazar, H. , Imtiaz, M. , Alsaedi, A. , and Ayub, M. , 2017, “Axisymmetric Squeezing Flow of Third Grade Fluid in Presence of Convective Conditions,” Chin. J. Phys., 55(3), pp. 738–754.
Hayat, T. , Rafiq, M. , and Ahmad, B. , 2016, “Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System With Porous Medium,” PLoS One, 25(1), p. e0145525.
Hayat, T. , Iqbal, R. , Tanveer, A. , and Alsaedi, A. , 2016, “Soret and Dufour Effects in MHD Peristalsis of Pseudoplastic Nanofluid With Chemical Reaction,” J. Mol. Liq., 220, pp. 693–706. [CrossRef]
Mustafa, M. , Abbasbandy, S. , Hina, S. , and Hayat, T. , 2014, “Numerical Investigation on Mixed Convective Peristaltic Flow of Fourth Grade Fluid With Dufour and Soret Effects,” J. Taiwan Inst. Chem. Eng., 45(2), pp. 308–316. [CrossRef]
Hayat, T. , Farooq, S. , Alsaedi, A. , and Ahmad, B. , 2017, “Numerical Study for Soret and Dufour Effects on Mixed Convective Peristalsis of Oldroyd 8-Constants Fluid,” Int. J. Therm. Sci., 112, pp. 68–81. [CrossRef]
Hayat, T. , Quratulain , Rafiq, M. , Alsaadi, F. , and Ayub, M. , 2016, “Soret and Dufour Effects on Peristaltic Transport in Curved Channel With Radial Magnetic Field and Convective Conditions,” J. Magn. Magn. Mater., 405, pp. 358–369. [CrossRef]
Hayat, T. , Bibi, S. , Rafiq, M. , Alsaedi, A. , and Abbasi, F. M. , 2016, “Effects of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid in an Inclined Channel With Convective Conditions,” J. Magn. Magn. Mater., 401, pp. 733–745. [CrossRef]
Ramesh, K. , 2016, “Influence of Heat and Mass Transfer on Peristaltic Flow of a Couple Stress Fluid Through Porous Medium in the Presence of Inclined Magnetic Field in an Inclined Asymmetric Channel,” J. Mol. Liq., 219, pp. 256–271. [CrossRef]
Hayat, T. , Shafique, M. , Tanveer, A. , and Alsaedi, A. , 2016, “Magnetohydrodynamic Effects on Peristaltic Flow of Hyperbolic Tangent Nanofluid With Slip Conditions and Joule Heating in an Inclined Channel,” Int. J. Heat Mass Transfer, 102, pp. 54–63. [CrossRef]
Ramesh, K. , and Devakar, M. , 2017, “Effect of Heat Transfer on the Peristaltic Transport of a MHD Second Grade Fluid Through a Porous Medium in an Inclined Asymmetric Channel,” Chin. J. Phys., 55(3), pp. 825–844.

Figures

Grahic Jump Location
Fig. 1

Physical picture of problem

Grahic Jump Location
Fig. 2

Effect of E1−E3 on u(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/1000, β2=3/10, β3=4/10, β=1/1000,Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6,Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, and M = 2

Grahic Jump Location
Fig. 3

Effect of α on u(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/1000, β2=3/10, β3=4/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=1.5, E2=0.5, E3=0.05 and M = 2

Grahic Jump Location
Fig. 4

Effect of θ on u(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/1000, β2=3/10, β3=4/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=1.5, E2=0.5, E3=0.05 and M = 2

Grahic Jump Location
Fig. 5

Effect of β on u(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/1000, β2=3/10, β3=4/10, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=1.5, E2=0.5, E3=0.05 and M = 2

Grahic Jump Location
Fig. 6

Effect of β1 on u(y) when ϵ=1/10, x=3/10, t=1/10, β2=3/10, β3=4/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=1.5, E2=0.5, E3=0.05 and M = 2

Grahic Jump Location
Fig. 7

Effect of Fr on u(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/1000, β2=3/10, β3=4/10, β=1/1000, Pr=3, Rn=1/10, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=1.5, E2=0.5, E3=0.05 and M = 2

Grahic Jump Location
Fig. 8

Effect of M on u(y) when ϵ=1/10, x=3/10,t=1/10, β1=1/1000, β2=3/10, β3=4/10, β=1/1000, Pr=3,Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=1.5, E2=0.5 and E3=0.05

Grahic Jump Location
Fig. 9

Effect of Re on u(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/1000, β2=3/10, β3=4/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=1.5, E2=0.5, E3=0.05 and M = 2

Grahic Jump Location
Fig. 10

Effect of E1−E3 on T(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/100, β2=1/10, β3=1/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10 and M=3/10

Grahic Jump Location
Fig. 11

Effect of Rn on T(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/100, β2=1/10, β3=1/10, β=1/1000, Pr=3, Fr=1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=0.5, E2=0.3, E3=0.055 and M = 3/10

Grahic Jump Location
Fig. 12

Effect of β on T(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/100, β2=1/10, β3=1/10, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=0.5, E2=0.3, E3=0.055 and M = 3/10

Grahic Jump Location
Fig. 13

Effect of β2 on T(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/100, β3=1/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10, Du=3/10,Sc=3/10, E1=0.5, E2=0.3, E3=0.055 and M = 3/10

Grahic Jump Location
Fig. 14

Effect of M on T(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/100, β2=1/10, β3=1/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10,Du=3/10, Sc=3/10, E1=0.5, E2=0.3 and E3=0.055

Grahic Jump Location
Fig. 15

Effect of θ on T(y) when ϵ=1/10, x=3/10, t=1/10,β1=1/100, β2=1/10, β3=1/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, α=π/6, Br=4/10, Sr=3/10, Du=3/10, Sc=3/10, E1=0.5, E2=0.3, E3=0.055 and M = 3/10

Grahic Jump Location
Fig. 16

Effect of Du on T(y) when ϵ=1/10, x=3/10, t=1/10,β1=1/100, β2=1/10, β3=1/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Sr=3/10,Sc=3/10, E1=0.5, E2=0.3, E3=0.055 and M = 3/10

Grahic Jump Location
Fig. 17

Effect of Sr on T(y) when ϵ=1/10, x=3/10, t=1/10,β1=1/100, β2=1/10, β3=1/10, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Du=3/10, Sc=3/10, E1=0.5, E2=0.3, E3=0.055 and M = 3/10

Grahic Jump Location
Fig. 18

Effect of E1−E3 on C(y) when ϵ=1/10, x=3/10,t=1/10, β1=1/100, β2=1/100, β3=1/100, β=1/10000, Pr=3,Rn=1/10, Fr = 5/10, Re = 1/10,000, θ=π/5, α=π/5, Br=4/10,Du=3/10, Sc=3/10 and M=3/10

Grahic Jump Location
Fig. 19

Effect of β on C(y) when ϵ=1/10, x=3/10, t=1/10,β1=1/100, β2=1/100, β3=1/100, Pr=3, Rn=1/10, Fr = 5/10, Re = 1/10,000, θ=π/5, α=π/5, Br=4/10, Du=3/10, Sc=3/10,E1=2, E2=1.5, E3=0.05 and M = 3/10

Grahic Jump Location
Fig. 20

Effect of β3 on C(y) when ϵ=1/10, x=3/10, t=1/10, β1=1/100, β2=1/100, β=1/10,000, Pr=3, Fr=5/10, Re = 1/10,000, θ=π/5, α=π/5, Br=4/10, Du=3/10, Sc=3/10, E1=2, E2=1.5, E3=0.05 and M=3/10

Grahic Jump Location
Fig. 21

Effect of Rn on Z(x) when ϵ=1/10, t=1/10, β1=1/1000, β2=1/1000, β3=1/1000, β=1/1000, Pr=3, Fr=1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Du=3/10, Sc=3/10, E1=1.5, E2=0.5, E3=0.05 and M = 2

Grahic Jump Location
Fig. 22

Effect of β2 on Z(x) when ϵ=1/10, t=1/10, β1=1/1000, β3=1/1000, β=1/1000, Pr=3, Rn=1/10, Fr = 1/1000, Re = 1/1000, θ=π/6, α=π/6, Br=4/10, Du=3/10, Sc=3/10, E1=1.5, E2=0.5, E3=0.05 and M=2

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In