0
Review Article

Convective Heat Transfer Enhancement Using Ferrofluid: A Review

[+] Author and Article Information
Jaswinder Singh Mehta

Department of Mechanical Engineering,
UIET,
Panjab University,
Sec 25,
Chandigarh 160014, India
e-mail: jsmehta@pu.ac.in

Rajesh Kumar

Department of Mechanical Engineering,
UIET,
Panjab University,
Sec 25,
Chandigarh 160014, India
e-mail: rajeshmadan@pu.ac.in

Harmesh Kumar

Department of Mechanical Engineering,
UIET,
Panjab University,
Sec 25,
Chandigarh 160014, India
e-mail: harmeshkansal@gmail.com

Harry Garg

Optical Devices and Systems,
Central Scientific Instruments Organisation,
Chandigarh 160014, India
e-mail: harry.garg@gmail.com

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received December 23, 2016; final manuscript received June 7, 2017; published online August 29, 2017. Assoc. Editor: Amir Jokar.

J. Thermal Sci. Eng. Appl 10(2), 020801 (Aug 29, 2017) (12 pages) Paper No: TSEA-16-1383; doi: 10.1115/1.4037200 History: Received December 23, 2016; Revised June 07, 2017

Ferrofluids, a distinctive class of nanofluid, consists of suspension of magnetic nanoparticles in a nonmagnetic base fluid. Flow and heat transport properties of such a fluid can be manipulated when subjected to external magnetic field and temperature gradient. This unique feature has fascinated researchers across the globe to test its capability as a coolant for miniature electronic devices. The proposed work presents an updated and comprehensive review on ferrofluids with emphasis on heat transfer enhancement of microdevices. Based on the research findings, a number of important variables that have direct bearing on convective heat transport ability of ferrofluid have been recognized. The paper also identifies the key research challenges and opportunities for future research. By critically resolving these challenges, it is anticipated that ferrofluids can make substantial impact as coolant in miniature heat exchangers.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Xuan, Y. , and Li, Q. , 2000, “ Heat Transfer Enhancement of Nanofluids,” Int. J. Heat Fluid Flow, 21(1), pp. 58–64. [CrossRef]
Moosavi, M. , Goharshadi, E. K. , and Youssefi, A. , 2010, “ Fabrication, Characterization, and Measurement of Some Physicochemical Properties of ZnO Nanofluids,” Int. J. Heat Fluid Flow, 31(4), pp. 599–605. [CrossRef]
Das, S. K. , Putra, N. , Thiesen, P. , and Roetzel, W. , 2003, “ Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” ASME J. Heat Transfer, 125(4), pp. 567–574. [CrossRef]
Patel, H. E. , Sundararajan, T. , Pradeep, T. , Dasgupta, A. , Dasgupta, N. , and Das, S. K. , 2005, “ A Micro-Convection Model for Thermal Conductivity of Nanofluids,” Pramana, 65(5), pp. 863–869. [CrossRef]
Xie, H. , Wang, J. , Xi, T. , Liu, Y. , and Ai, F. , 2002, “ Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles,” J. Appl. Phys., 91, pp. 4568–4572. [CrossRef]
Wang, X. , Xu, X. , and Choi, S. U. S. , 1999, “ Thermal Conductivity of Nanoparticle—Fluid Mixture,” J. Thermophys. Heat Transfer, 13(4), pp. 474–480. [CrossRef]
Lee, S. , Choi, S. U. S. , Li, S. , and Eastman, J. A. , 1999, “ Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” ASME J. Heat Transfer, 121(2), pp. 280–289. [CrossRef]
Jang, S. P. , and Choi, S. U. S. , 2004, “ Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,” Appl. Phys. Lett. 84(21), pp. 4316–4318. [CrossRef]
Kang, S. W. , Wei, W. C. , Tsai, S. H. , and Yang, S. Y. , 2006, “ Experimental Investigation of Silver Nano-Fluid on Heat Pipe Thermal Performance,” Appl. Therm. Eng., 26(17–18), pp. 2377–2382. [CrossRef]
Pal, S. , Datta, A. , Sen, S. , Mukhopdhyay, A. , Bandopadhyay, K. , and Ganguly, R. , 2011, “ Characterization of a Ferrofluid-Based Thermomagnetic Pump for Microfluidic Applications,” J. Magn. Magn. Mater., 323(21), pp. 2701–2709. [CrossRef]
Massart, R. , 1982, “ Magnetic Fluids and Process for Obtaining Them,” Agence Nationale De Valorisation De La Recherche, Paris, France, U.S. Patent No. 4,329,241. http://www.google.com/patents/US4329241
Rosensweig, R. E. , 1985, Ferrohydrodynamics, Cambridge University Press, New York.
Papell, S. S. , 1965, “ Low Viscosity Magnetic Fluid Obtained By the Colloidal Suspension of Magnetic Particles,” U.S. Patent No. 3,215,572. https://www.google.com/patents/US3215572
Alsaady, M. , Fu, R. , Li, B. , Boukhanouf, R. , and Yan, Y. , 2015, “ Thermo-Physical Properties and Thermo-Magnetic Convection of Ferrofluid,” Appl. Therm. Eng., 88, pp. 14–21. [CrossRef]
Asfer, M. , Mehta, B. , Kumar, A. , Khandekar, S. , and Panigrahi, P. K. , 2016, “ Effect of Magnetic Field on Laminar Convective Heat Transfer Characteristics of Ferrofluid Flowing Through a Circular Stainless Steel Tube,” Int. J. Heat Fluid Flow, 59, pp. 74–86. [CrossRef]
Shakiba, A. , and Vahedi, K. , 2016, “ Numerical Analysis of Magnetic Field Effects on Hydro-Thermal Behavior of a Magnetic Nanofluid in a Double Pipe Heat Exchanger,” J. Magn. Magn. Mater., 402, pp. 131–142. [CrossRef]
Kim, D. , Kwon, Y. , Cho, Y. , Li, C. , Cheong, S. , Hwang, Y. , Lee, J. , Hong, D. , and Moon, S. , 2009, “ Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions,” Curr. Appl. Phys., 9(2), pp. 119–123. [CrossRef]
Aminfar, H. , Mohammadpourfard, M. , and Narmani Kahnamouei, Y. , 2011, “ A 3D Numerical Simulation of Mixed Convection of a Magnetic Nanofluid in the Presence of Non-Uniform Magnetic Field in a Vertical Tube Using Two Phase Mixture Model,” J. Magn. Magn. Mater., 323(15), pp. 1963–1972. [CrossRef]
Shahsavar, A. , Saghafian, M. , Salimpour, M. R. , and Shafii, M. B. , 2016, “ Experimental Investigation on Laminar Forced Convective Heat Transfer of Ferrofluid Loaded With Carbon Nanotubes Under Constant and Alternating Magnetic Fields,” Exp. Therm. Fluid Sci., 76, pp. 1–11. [CrossRef]
Sheikholeslami, M. , Rashidi, M. M. , and Ganji, D. D. , 2015, “ Effect of Non-Uniform Magnetic Field on Forced Convection Heat Transfer of Fe3O4-Water Nanofluid,” Comput. Methods Appl. Mech. Eng., 294, pp. 299–312. [CrossRef]
Khanafer, K. , Vafai, K. , and Lightstone, M. , 2003, “ Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” Int. J. Heat Mass Transfer, 46(19), pp. 3639–3653. [CrossRef]
Moallemi, M. K. , and Jang, K. S. , 1992, “ Prandtl Number Effects on Laminar Mixed Convection Heat Transfer in a Lid-Driven Cavity,” Int. J. Heat Mass Transfer, 35(8), pp. 1881–1892. [CrossRef]
Garg, H. , Negi, V. S. , Kharola, A. S. , and Garg, N. , 2016, “ Numerical Analysis Of Heat Transfer Parameters Using Ferrofluid,” Nanoscale Microscale Thermophys. Eng., 19(4), pp. 258–271. [CrossRef]
Sheikhnejad, Y. , Hosseini, R. , and Saffar-Avval, M. , 2015, “ Effect of Different Magnetic Field Distributions on Laminar Ferroconvection Heat Transfer in Horizontal Tube,” J. Magn. Magn. Mater., 389, pp. 136–143. [CrossRef]
Hanafizadeh, P. , Ashjaee, M. , Goharkhah, M. , Montazeri, K. , and Akram, M. , 2015, “ The Comparative Study of Single and Two-Phase Models for Magnetite Nanofluid Forced Convection in a Tube,” Int. Commun. Heat Mass Transfer, 65, pp. 58–70. [CrossRef]
Goshayeshi, H. R. , Goodarzi, M. , Safaei, M. R. , and Dahari, M. , 2016, “ Experimental Study on the Effect of Inclination Angle on Heat Transfer Enhancement of a Ferrofluid in a Closed Loop Oscillating Heat Pipe Under Magnetic Field,” Exp. Therm. Fluid Sci., 74, pp. 265–270. [CrossRef]
Goshayeshi, H. R. , Goodarzi, M. , and Dahari, M. , 2015, “ Effect of Magnetic Field on the Heat Transfer Rate of Kerosene/Fe2O3 Nanofluid in a Copper Oscillating Heat Pipe,” Exp. Therm. Fluid Sci., 68, pp. 663–668. [CrossRef]
Goharkhah, M. , and Ashjaee, M. , 2014, “ Effect of an Alternating Nonuniform Magnetic Field on Ferrofluid Flow and Heat Transfer in a Channel,” J. Magn. Magn. Mater., 362, pp. 80–89. [CrossRef]
Ganguly, R. , Sen, S. , and Puri, I. K. , 2004, “ Heat Transfer Augmentation Using a Magnetic Fluid Under the Influence of a Line Dipole,” J. Magn. Magn. Mater., 271(1), pp. 63–73. [CrossRef]
Goharkhah, M. , Salarian, A. , Ashjaee, M. , and Shahabadi, M. , 2015, “ Convective Heat Transfer Characteristics of Magnetite Nanofluid Under the Influence of Constant and Alternating Magnetic Field,” Powder Technol., 274, pp. 258–267. [CrossRef]
Goharkhah, M. , Ashjaee, M. , and Jamali, J. , 2015, “ Experimental Investigation on Heat Transfer and Hydrodynamic Behavior of Magnetite Nanofluid Flow in a Channel With Recognition of the Best Models for Transport Properties,” Exp. Therm. Fluid Sci., 68, pp. 582–592. [CrossRef]
Goharkhah, M. , Ashjaee, M. , and Shahabadi, M. , 2016, “ Experimental Investigation on Convective Heat Transfer and Hydrodynamic Characteristics of Magnetite Nanofluid Under the Influence of an Alternating Magnetic Field,” Int. J. Therm. Sci., 99, pp. 113–124. [CrossRef]
Yarahmadi, M. , Moazami, H. , and Goudarzi, S. M. B. , 2015, “ Experimental Investigation Into Laminar Forced Convective Heat Transfer of Ferrofluids Under Constant and Oscillating Magnetic Field With Different Magnetic Field Arrangements and Oscillation Modes,” Exp. Therm. Fluid Sci., 68, pp. 601–611. [CrossRef]
Kurtoğlu, E. , Kaya, A. , Gözüaçik, D. , Yağci Acar, H. F. , and Kosar, A. , 2014, “ Experimental Study on Convective Heat Transfer Performance of Iron Oxide Based Ferrofluids in Microtubes,” ASME J. Therm. Sci. Eng. Appl., 6(3), p. 34501. [CrossRef]
Kline, S. , and McClintock, F. A. , 1953, “ Describing Uncertainties in Single-Sample Experiments,” Mech. Eng., 75, pp. 3–8.
Hosseindibaeebonab, M. , Shafii, M. B. , and Nobakhti, M. H. , 2014, “ Numerical Simulation of Internal Convection Heat Transfer of Ferrofluids Under Alternating Magnetic Field,” Indian J. Sci. Res., 1(2), pp. 733–743. https://www.ijsr.in/upload/1810257446Microsoft%20Word%20-%20IJSR102.pdf
Ghofrani, A. , Dibaei, M. H. , Hakim Sima, A. , and Shafii, M. B. , 2013, “ Experimental Investigation on Laminar Forced Convection Heat Transfer of Ferrofluids Under an Alternating Magnetic Field,” Exp. Therm. Fluid Sci., 49, pp. 193–200. [CrossRef]
Bahiraei, M. , and Hangi, M. , 2013, “ Investigating the Efficacy of Magnetic Nanofluid as a Coolant in Double-Pipe Heat Exchanger in the Presence of Magnetic Field,” Energy Convers. Manage., 76, pp. 1125–1133. [CrossRef]
Aminfar, H. , Mohammadpourfard, M. , and Ahangar Zonouzi, S. , 2014, “ Numerical Investigation of the Transient Hydrothermal Behavior of a Ferrofluid Flowing Through a Helical Duct in the Presence of Nonuniform Magnetic Field,” ASME J. Heat Transfer, 136(6), p. 061702. [CrossRef]
Rabbi, K. M. , Saha, S. , Mojumder, S. , Rahman, M. M. , Saidur, R. , and Ibrahim, T. A. , 2016, “ Numerical Investigation of Pure Mixed Convection in a Ferrofluid-Filled Lid-Driven Cavity for Different Heater Configurations,” Alexandria Eng. J., 55(1), pp. 127–139. [CrossRef]
Oztop, H. F. , Al-Salem, K. , and Pop, I. , 2011, “ MHD Mixed Convection in Liddriven Cavity With Corner Heater,” Int. J. Heat Mass Transfer, 54(15–16), pp. 3494–3504. [CrossRef]
Aursand, E. , Gjennestad, M. A. , Lervåg, K. Y. , and Lund, H. , 2016, “ Potential of Enhancing a Natural Convection Loop With a Thermomagnetically Pumped Ferrofluid,” J. Magn. Magn. Mater., 417, pp. 148–159. [CrossRef]
Aursand, E. , Gjennestad, M. A. , Lervag, K. Y. , and Lund, H. , 2016, “ A Multi-Phase Ferrofluid Flow Model With Equation of State for Thermomagnetic Pumping and Heat Transfer,” J. Magn. Magn. Mater., 402, pp. 8–19. [CrossRef]
Iwamoto, Y. , Yamaguchi, H. , and Niu, X. D. , 2011, “ Magnetically-Driven Heat Transport Device Using a Binary Temperature-Sensitive Magnetic Fluid,” J. Magn. Magn. Mater., 323(10), pp. 1378–1383. [CrossRef]
Jafari, A. , Shahmohammadi, A. , and Mousavi, S. M. , 2015, “ CFD Investigation of Gravitational Sedimentation Effect on Heat Transfer of a Nano-Ferrofluid,” Iran. J. Chem. Chem. Eng., 34(1), pp. 87–96. http://www.ijcce.ac.ir/article_12686_2075.html
Sheikholeslami, M. , and Rashidi, M. M. , 2015, “ Effect of Space Dependent Magnetic Field on Free Convection of Fe3O4-Water Nanofluid,” J. Taiwan Inst. Chem. Eng., 56, pp. 6–15. [CrossRef]
Rahman, M. M. , Mojumder, S. , Saha, S. , Joarder, A. H. , Saidur, R. , and Naim, A. G. , 2015, “ Numerical and Statistical Analysis on Unsteady Magnetohydrodynamic Convection in a Semi-Circular Enclosure Filled With Ferrofluid,” Int. J. Heat Mass Transfer, 89, pp. 1316–1330. [CrossRef]
Ghasemi, B. , Aminossadati, S. M. , and Raisi, A. , 2011, “ Magnetic Field Effect on Natural Convection in a Nanofluid-Filled Square Enclosure,” Int. J. Therm. Sci., 50(9), pp. 1748–1756. [CrossRef]
Shahsavar, A. , Salimpour, M. R. , Saghafian, M. , and Shafii, M. B. , 2015, “ An Experimental Study on the Effect of Ultrasonication on Thermal Conductivity of Ferrofluid Loaded With Carbon Nanotubes,” Thermochim. Acta, 617, pp. 102–110. [CrossRef]
Lo, K. J. , and Weng, H. C. , 2015, “ Convective Heat Transfer of Magnetic Nanofluids in a Microtube,” Smart Sci., 3(2), pp. 56–64. [CrossRef]
Seo, H. S. , Lee, J. C. , Hwang, I. J. , and Kim, Y. J. , 2014, “ Flow Characteristics of Ferrofluid in a Microchannel With Patterned Blocks,” Mater. Res. Bull., 58, pp. 10–14. [CrossRef]
Selimefendigil, F. , Öztop, H. F. , and Al-Salem, K. , 2014, “ Natural Convection of Ferrofluids in Partially Heated Square Enclosures,” J. Magn. Magn. Mater., 372, pp. 122–133. [CrossRef]
Oztop, H. F. , and Abu-Nada, E. , 2008, “ Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids,” Int. J. Heat Fluid Flow, 29(5), pp. 1326–1336. [CrossRef]
Sheikholeslami, M. , and Ganji, D. D. , 2014, “ Ferrohydrodynamic and Magnetohydrodynamic Effects on Ferrofluid Flow and Convective Heat Transfer,” Energy, 75, pp. 400–410. [CrossRef]
Aminfar, H. , Mohammadpourfard, M. , and Ahangar Zonouzi, S. , 2013, “ Numerical Study of the Ferrofluid Flow and Heat Transfer Through a Rectangular Duct in the Presence of a Non-Uniform Transverse Magnetic Field,” J. Magn. Magn. Mater., 327, pp. 31–42. [CrossRef]
Karimi, A. , Abdolahi Sadatlu, M. A. , and Ashjaee, M. , 2016, “ Experimental Studies on the Viscosity of Fe Nanoparticles Dispersed in Ethylene Glycol and Water Mixture,” Therm. Sci., 20(5), pp. 1661–1670. [CrossRef]
Tothova, J. , Kova, J. , Kop, P. , Raj, M. , and Paulovi, K. , 2014, “ Viscosity Dependence of a Magnetic Fluid Nanoparticles Concentration,” Acta Physica Polonica A, 126(1), pp. 278–279. http://przyrbwn.icm.edu.pl/APP/PDF/126/a126z1p134.pdf
Shahmohammadi, A. , and Jafari, A. , 2014, “ Comparison of Magnetic Field and Fin on Heat Transfer Enhancement of a Nano-Ferrofluid Using CFD,” The Third International Conference on Biotechnology, Nanotechnology and Its Applications (ICBNA), Abu Dhabi, United Arab Emirates, Mar. 19–20, pp. 13–15. http://psrcentre.org/images/extraimages/4%20314041.pdf
Gavili, A. , Zabihi, F. , Dallali, T. , and Hadi, I. , 2012, “ Effect of Temperature Variation on Thermal Conductivity of Ferrofluids Under Magnetic Field,” Fourth International Conference on Nanostructures, Kish Island, Iran, Mar. 12–14, pp. 1400–1402.
Nkurikiyimfura, I. , Wang, Y. , Pan, Z. , and Hu, D. , 2011, “ Enhancement of Thermal Conductivity of Magnetic Nanofluids in Magnetic Field,” International Conference on Materials for Renewable Energy and Environment (ICMREE), Shanghai, China, May 20–22, Vol. 2, pp. 1333–1337.
Petit, M. , Avenas, Y. , Kedous-Lebouc, A. , Cherief, W. , and Rullière, E. , 2014, “ Experimental Study of a Static System Based on a Magneto-Thermal Coupling in Ferrofluids,” Int. J. Refrig., 37(1), pp. 201–208. [CrossRef]
Sheikholeslami, M. , and Gorji-Bandpy, M. , 2014, “ Free Convection of Ferrofluid in a Cavity Heated From Below in the Presence of an External Magnetic Field,” Powder Technol., 256, pp. 490–498. [CrossRef]
Kefayati, G. H. R. , 2014, “ Natural Convection of Ferrofluid in a Linearly Heated Cavity Utilizing LBM,” J. Mol. Liq., 191, pp. 1–9. [CrossRef]
Sesen, M. , Teksen, Y. , Şendur, K. , Pinar Mengüç, M. , Öztürk, H. , Yağci Acar, H. F. , and Koşar, A. , 2012, “ Heat Transfer Enhancement With Actuation of Magnetic Nanoparticles Suspended in a Base Fluid,” J. Appl. Phys., 112(6), p. 064320. [CrossRef]
Taslimifar, M. , Mohammadi, M. , Afshin, H. , Saidi, M. H. , and Shafii, M. B. , 2013, “ Overall Thermal Performance of Ferrofluidic Open Loop Pulsating Heat Pipes: An Experimental Approach,” Int. J. Therm. Sci., 65, pp. 234–241. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Components of ferrofluid

Grahic Jump Location
Fig. 2

Effect of temperature on magnetization

Grahic Jump Location
Fig. 3

Thermomagnetic convection principle

Grahic Jump Location
Fig. 4

(a) Enhancement of heat transfer coefficient measured as ratio of h/hpure water for different heat fluxes at flow rate, Q = 0.36 ml/s [34] and (b) enhancement of heat transfer coefficient measured as ratio of h/hpure water for different heat fluxes at flow rate, Q = 1 ml/s [34]

Grahic Jump Location
Fig. 5

(a) Increase in surface temperature with respect to ambient temperature for different heat fluxes at flow rate, Q = 0.36 ml/s [34] and (b) increase in surface temperature with respect to ambient temperature for different heat fluxes at flow rate, Q = 1 ml/s [34]

Grahic Jump Location
Fig. 6

Percentage enhancement of heat transfer as a function of dilution amount at different flow rates, Q [34]

Grahic Jump Location
Fig. 7

Effect of applying nonuniform transverse magnetic field with different intensities on the average Nusselt number [39]

Grahic Jump Location
Fig. 8

Effect of applying nonuniform transverse magnetic field on the friction factor along the channel length [39]

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In