Day,
A. J.
, and
Newcomb,
T. P.
, 1984, “
The Dissipation of Frictional Energy From the Interface of an Annular Disc Brake,” Proc. Inst. Mech. Eng., Part D,
198(3), pp. 201–209.

[CrossRef]
Lee,
K.
, 1999, “
Numerical Prediction of Brake Fluid Temperature Rise During Braking and Heat Soaking,” SAE Trans.,
108(6, Part 1), pp. 897–905.

Hunter,
J. E.
,
Cartier,
S. S.
,
Temple,
D. J.
, and
Mason,
R. C.
, 1998, “
Brake Fluid Vaporization as a Contributing Factor in Motor Vehicle Collisions,” SAE Paper No. 980371.

Mackin,
T. J.
,
Noe,
S. C.
,
Ball,
K. J.
,
Bedell,
B. C.
,
Bim-Merle,
D. P.
,
Bingaman,
M. C.
,
Bomleny,
D. M.
,
Chemlir,
G. J.
,
Clayton,
D. B.
,
Evans,
H. A.
, and
Gau,
R.
, 2002, “
Thermal Cracking in Disc Brakes,” Eng. Failure Anal.,
9(1), pp. 63–76.

[CrossRef]
Gao,
C. H.
,
Huang,
J. M.
,
Lin,
X. Z.
, and
Tang,
X. S.
, 2007, “
Stress Analysis of Thermal Fatigue Fracture of Brake Disks Based on Thermomechanical Coupling,” ASME J. Tribol.,
129(3), pp. 536–543.

[CrossRef]
Orthwein,
W. C.
, 2004, Clutches and Brakes Design and Selection, 2nd ed.,
Marcel Dekker, New York.

[CrossRef]
Limpert,
R.
, 1999, Brake Design and Safety, 2nd ed.,
SAE International, Warrendale, PA.

Limpert,
R.
, 1975, “
Cooling Analysis of Disc Brake Rotors,” SAE Paper No. 751014.

Belhocine,
A.
, and
Bouchetara,
M.
, 2012, “
Thermal Behavior of Full and Ventilated Disc Brakes of Vehicles,” J. Mech. Sci. Technol.,
26(11), pp. 3643–3652.

[CrossRef]
Johnson,
D. A.
,
Sperandei,
B. A.
, and
Gilbert,
R.
, 2003, “
Analysis of the Flow Through a Vented Automotive Brake Rotor,” ASME J. Fluids Eng.,
125(6), pp. 979–986.

[CrossRef]
Sakamoto,
H.
, 2004, “
Heat Convection and Design of Brake Discs,” Proc. Inst. Mech. Eng. Part F,
218(3), pp. 203–212.

[CrossRef]
McPhee,
A. D.
, and
Johnson,
D. A.
, 2008, “
Experimental Heat Transfer and Flow Analysis of a Vented Brake Rotor,” Int. J. Therm. Sci.,
47(4), pp. 458–467.

[CrossRef]
Wallis,
L.
,
Leonardi,
E.
,
Milton,
B.
, and
Joseph,
P.
, 2002, “
Air Flow and Heat Transfer in Ventilated Disc Brake Rotors With Diamond and Tear-Drop Pillars,” Numer. Heat Transfer, Part A,
41(6–7), pp. 643–655.

[CrossRef]
Nejat,
A.
,
Aslani,
M.
,
Mirzakhalili,
E.
, and
Asl,
R. N.
, 2011, “
Heat Transfer Enhancement in Ventilated Brake Disk Using Double Airfoil Vanes,” ASME J. Therm. Sci. Eng. Appl.,
3(4), p. 045001.

[CrossRef]
Yan,
H. B.
,
Zhang,
Q. C.
, and
Lu,
T. J.
, 2015, “
An X-Type Lattice Cored Ventilated Brake Disc With Enhanced Cooling Performance,” Int. J. Heat Mass Transfer,
80, pp. 458–468.

[CrossRef]
Yan,
H. B.
,
Zhang,
Q. C.
, and
Lu,
T. J.
, 2016, “
Heat Transfer Enhancement by X-Type Lattice in Ventilated Brake Disc,” Int. J. Therm. Sci.,
107, pp. 39–55.

[CrossRef]
Yan,
H. B.
,
Mew,
T.
,
Lee,
M. G.
,
Kang,
K. J.
,
Lu,
T. J.
,
Kienhöfer,
F. W.
, and
Kim,
T.
, 2015, “
Thermofluidic Characteristics of a Porous Ventilated Brake Disk,” ASME J. Heat Transfer,
137(2), p. 022601.

[CrossRef]
Xie,
G.
,
Song,
Y.
,
Asadi,
M.
, and
Lorenzini,
G.
, 2015, “
Optimization of Pin-Fins for a Heat Exchanger by Entropy Generation Minimization and Constructal Law,” ASME J. Heat Transfer,
137(6), p. 061901.

[CrossRef]
Najafi,
H.
,
Najafi,
B.
, and
Hoseinpoori,
P.
, 2011, “
Energy and Cost Optimization of a Plate and Fin Heat Exchanger Using Genetic Algorithm,” Appl. Therm. Eng.,
31(10), pp. 1839–1847.

[CrossRef]
Hajmohammadi,
M. R.
,
Shirani,
E.
,
Salimpour,
M. R.
, and
Campo,
A.
, 2012, “
Constructal Placement of Unequal Heat Sources on a Plate Cooled by Laminar Forced Convection,” Int. J. Therm. Sci.,
60, pp. 13–22.

[CrossRef]
Madadi,
R. R.
, and
Balaji,
C.
, 2008, “
Optimization of the Location of Multiple Discrete Heat Sources in a Ventilated Cavity Using Artificial Neural Networks and Micro Genetic Algorithm,” Int. J. Heat Mass Transfer,
51(9), pp. 2299–2312.

[CrossRef]
Palmer,
E.
,
Mishra,
R.
, and
Fieldhouse,
J.
, 2009, “
An Optimization Study of a Multiple-Row Pin-Vented Brake Disc to Promote Brake Cooling Using Computational Fluid Dynamics,” Proc. Inst. Mech. Eng., Part D,
223(7), pp. 865–875.

[CrossRef]
Galindo-Lopez,
C. H.
, and
Tirovic,
M.
, 2008, “
Understanding and Improving the Convective Cooling of Brake Discs With Radial Vanes,” Proc. Inst. Mech. Eng., Part D,
222(7), pp. 1211–1229.

[CrossRef]
Munisamy,
K. M.
,
Shuaib,
N. H.
,
Yusoff,
M. Z.
, and
Thangaraju,
S. K.
, 2013, “
Heat Transfer Enhancement on Ventilated Brake Disk With Blade Inclination Angle Variation,” Int. J. Autom. Technol.,
14(4), pp. 569–577.

[CrossRef]
Chi,
Z.
,
He,
Y.
, and
Naterer,
G.
, 2009, “
Convective Heat Transfer Optimization of Automotive Brake Discs,” SAE Int. J. Passenger Cars-Mech. Syst.,
2(1), pp. 961–969.

[CrossRef]
Qian,
C.
, 2002, “
Aerodynamic Shape Optimization Using CFD Parametric Model With Brake Cooling Application,” SAE Paper No. 2002-01-0599.

Kulfan,
B. M.
, 2008, “
Universal Parametric Geometry Representation Method,” J. Aircr.,
45(1), pp. 142–158.

[CrossRef]
Ceze,
M.
,
Hayashi,
M.
, and
Volpe,
E.
, 2009, “
A Study of the CST Parameterization Characteristics,” AIAA Paper No. 2009-3767.

Keane,
A.
, and
Nair,
P.
, 2005, Computational Approaches for Aerospace Design: The Pursuit of Excellence,
Wiley, Chichester, UK.

[CrossRef]
Wang,
X.
, and
Damodaran,
M.
, 2001, “
Aerodynamic Shape Optimization Using Computational Fluid Dynamics and Parallel Simulated Annealing Algorithms,” AIAA J.,
39(8), pp. 1500–1508.

[CrossRef]
Arani,
B. O.
,
Mirzabeygi,
P.
, and
Shariat Panahi,
M.
, 2013, “
An Improved PSO Algorithm With a Territorial Diversity-Preserving Scheme and Enhanced Exploration–Exploitation Balance,” Swarm Evol. Comput.,
11, pp. 1–15.

[CrossRef]
Khurana,
M.
,
Sinha,
A.
, and
Winarto,
H.
, 2008, “
Multi-Mission Reconfigurable UAV-Airfoil Optimization Through Swarm Approach and Low Fidelity Solver,” 23rd International Conference on Unmanned Air Vehicle Systems, Bristol, UK, Apr. 7–9, pp. 1180–1192.

Wickramasinghe,
U. K.
,
Carrese,
R.
, and
Li,
X.
, 2010, “
Designing Airfoils Using a Reference Point Based Evolutionary Many-Objective Particle Swarm Optimization Algorithm,” IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, July 18–23, pp. 1–8.

Suribabu,
C. R.
, and
Neelakantan,
T. R.
, 2006, “
Particle Swarm Optimization Compared to Other Heuristic Search Techniques for Pipe Sizing,” J. Environ. Inf.,
8(1), pp. 1–9.

[CrossRef]
Xia,
C. C.
,
Jiang,
T. T.
, and
Chen,
W. F.
, 2017, “
Particle Swarm Optimization of Aerodynamic Shapes With Nonuniform Shape Parameter–Based Radial Basis Function,” J. Aerosp. Eng.,
30(3), p. 04016089.

[CrossRef]
Robinson,
J.
, and
Rahmat-Samii,
Y.
, 2004, “
Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antennas Propag.,
52(2), pp. 397–407.

[CrossRef]
Suganthan,
P. N.
,
Hansen,
N.
,
Liang,
J. J.
,
Deb,
K.
,
Chen,
Y. P.
,
Auger,
A.
, and
Tiwari,
S.
, 2005, “
Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization,” IIT Kanpur, Kanpur, India, Nanyang Technological University, Singapore, and KanGAL Report No. 2005005.

https://www.lri.fr/~hansen/Tech-Report-May-30-05.pdf
Nejat,
A.
,
Mirzabeygi,
P.
,
Shariat-Panahi,
M.
, and
Mirzakhalili,
E.
, 2012, “
Heat Transfer Enhancement Across a Pair of Confined Cylinders Using Improved Particle Swarm Optimization Algorithm,” ASME Paper No. IMECE2012-88833.

Nejat,
A.
,
Mirzabeygi,
P.
, and
Shariat-Panahi,
M.
, 2012, “
Aerodynamic Shape Optimization Using Improved Territorial Particle Swarm Algorithm,” ASME Paper No. IMECE2012-88828.

Anderson,
D.
, and
McNeill,
G.
, 1992, “
Artificial Neural Networks Technology,” Kaman Science Corporation, Data & Analysis Center for Software, Utica, NY, Contract No. F30602-89-C-0082.

Khurana,
M. S.
,
Winarto,
H.
, and
Sinha,
A. K.
, 2008, “
Application of Swarm Approach and Artificial Neural Networks for Airfoil Shape Optimization,” AIAA Paper No. 2008-5954.

Hacioglu,
A.
, 2007, “
Fast Evolutionary Algorithm for Airfoil Design Via Neural Network,” AIAA J.,
45(9), pp. 2196–2203.

[CrossRef]
Duvigneau,
R.
, and
Visonneau,
M.
, 2002, “
Hybrid Genetic Algorithms and Neural Networks for Fast CFD-Based Design,” AIAA Paper No. 2002-5465.

Ghadimi,
B.
,
Kowsary,
F.
, and
Khorami,
M.
, 2015, “
Heat Flux On-Line Estimation in a Locomotive Brake Disc Using Artificial Neural Networks,” Int. J. Therm. Sci.,
90, pp. 203–213.

[CrossRef]
May,
R.
,
Dandy,
G.
, and
Maier,
H.
, 2011, “
Review of Input Variable Selection Methods for Artificial Neural Networks,” Artificial Neural Networks—Methodological Advances and Biomedical Applications,
K. Suzuki
, ed.,
InTech, Rijeka, Croatia, pp. 19–44.

[CrossRef]
Taguchi,
G.
, and
Konishi,
S.
, 1987, “
Taguchi Methods, Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering,” American Supplier Institute, Dearborn, MI, pp. 8–35.

Roy,
R. K.
, 1990, A Primer on the Taguchi Method (
Competitive Manufacturing Series), Springer, New York, pp. 7–80.

Ranjit,
K. R.
, 2001, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement,
Wiley, Hoboken, NJ.

Kalogirou,
S. A.
, 2012, “
Combination of Taguchi Method and Artificial Intelligence Techniques for the Optimal Design of Flat-Plate Collectors,” World Renewable Energy Forum (WREF), Denver, CO, May 13–17, Vol.
6, pp. 4435–4442.

http://ktisis.cut.ac.cy/handle/10488/7586
Huang,
C. N.
, and
Yu,
C. C.
, 2016, “
Integration of Taguchi’s Method and Multiple-Input Multiple-Output ANFIS Inverse Model for the Optimal Design of a Water-Cooled Condenser,” Appl. Therm. Eng.,
98, pp. 605–609.

[CrossRef]
Talati,
F.
, and
Jalalifar,
S.
, 2008, “
Investigation of Heat Transfer Phenomena in a Ventilated Disk Brake Rotor With Straight Radial Rounded Vanes,” J. Appl. Sci.,
8(20), pp. 3583–3592.

[CrossRef]
Shih,
T. H.
,
Liou,
W. W.
,
Shabbir,
A.
,
Yang,
Z.
, and
Zhu,
J.
, 1995, “
A New

*k*–

*ε* Eddy Viscosity Model for High Reynolds Number Turbulent Flows,” Comput. Fluids,
24(3), pp. 227–238.

[CrossRef]
Hourigan,
K.
,
Welch,
L. W.
,
Thompson,
M. C.
,
Cooper,
P. I.
, and
Welsh,
M. C.
, 1991, “
Augmented Forced Convection Heat Transfer in Separated Flow Around a Blunt Flat Plate,” Exp. Therm. Fluid Sci.,
4(2), pp. 182–191.

[CrossRef]
Iacovides,
H.
, and
Raisee,
M.
, 1999, “
Recent Progress in the Computation of Flow and Heat Transfer in Internal Cooling Passages of Turbine Blades,” Int. J. Heat Fluid Flow,
20(3), pp. 320–328.

[CrossRef]
Häring,
M.
,
Bölcs,
A.
,
Harasgama,
S. P.
, and
Richter,
J.
, 1994, “
Heat Transfer Measurements on Turbine Airfoils Using the Naphthalene Sublimation Technique,” ASME Paper No. 94-GT-171.

Krall,
K. M.
, and
Sparrow,
E. M.
, 1966, “
Turbulent Heat Transfer in the Separated, Reattached, and Redevelopment Regions of a Circular Tube,” ASME J. Heat Transfer,
88(1), pp. 131–136.

[CrossRef]
Togun,
H.
,
Kazi,
S. N.
, and
Badarudin,
A.
, 2011, “
A Review of Experimental Study of Turbulent Heat Transfer in Separated Flow,” Aust. J. Basic Appl. Sci.,
5(10), pp. 489–505.

http://repository.um.edu.my/17406/1/489-505.pdf
Ota,
T.
, and
Kon,
N.
, 1974, “
Heat Transfer in the Separated and Reattached Flow on a Blunt Flat Plate,” ASME J. Heat Transfer,
96(4), pp. 459–462.

[CrossRef]
Kasabov,
N. K.
, 1996, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering,
MIT Press, Cambridge, UK.

Vemuri,
V. R.
, and
Rogers,
R. D.
, 1994, Artificial Neural Networks-Forecasting Time Series,
IEEE Computer Society Press, Los Alamitos, CA.

Rajkumar,
T.
, and
Bardina,
J.
, 2003, “
Training Data Requirement for a Neural Network to Predict Aerodynamic Coefficients,” Proc. SPIE,
5102, pp. 92–103.

Kenndy,
J.
, and
Eberhart,
R. C.
, 1995, “
Particle Swarm Optimization,” IEEE International Conference on Neural Networks, Perth, Western Australia, Nov. 27–Dec. 1, Vol.
4, pp. 1942–1948.

https://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
Riget,
J.
, and
Vesterstrøm,
J. S.
, 2002, “
A Diversity-Guided Particle Swarm Optimizer—The ARPSO,” Department of Computer Science, University of Aarhus, Aarhus, Denmark, Technical Report No. 2002-02.

http://pure.au.dk/portal/en/publications/a-diversityguided-particle-swarm-optimizer--the-arpso(d4676ba0-3522-11dc-bee9-02004c4f4f50).html
Ghalia,
M. B.
, 2008, “
Particle Swarm Optimization With an Improved Exploration-Exploitation Balance,” 51st Midwest Symposium on Circuits and Systems (MWSCAS), Knoxville, TN, Aug. 10–13, pp. 759–762.