0
Technical Brief

Performance Improvements in Cooker-Top Gas Burners for Small Aspect Ratio Changes

[+] Author and Article Information
Robson L. Silva

Energy and Mechanical Engineering,
Grande Dourados Federal University,
Road MS-270 (Dourados-Itahum), km 12,
Mail Box 533,
Dourados, MS 79.804-970, Brazil
e-mail: rlealsilva@hotmail.com

Bruno V. Sant′Ana, José R. Patelli, Jr.

Energy and Mechanical Engineering,
Grande Dourados Federal University,
Road MS-270 (Dourados-Itahum), km 12,
Mail Box 533,
Dourados, MS 79.804-970, Brazil

Marcelo M. Vieira

Mechanical Engineering,
Mato Grosso Federal University,
Road MT-270 (Rondonópolis-Guiratinga), km 06,
Rondonópolis, MT, 78.735-901, Brazil

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received October 10, 2016; final manuscript received March 17, 2017; published online May 9, 2017. Assoc. Editor: Amir Jokar.

J. Thermal Sci. Eng. Appl 9(4), 044503 (May 09, 2017) (6 pages) Paper No: TSEA-16-1290; doi: 10.1115/1.4036362 History: Received October 10, 2016; Revised March 17, 2017

This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

MME–Ministério de Minas e Energia, 2015, “ Boletim Mensal de Energia (Maio 2015),” Brasília, Brazil, accessed Aug. 31, 2015, http://goo.gl/s2rFEL
SINDIGAS, 2015, “ Preço do gás de Cozinha vai ter Aumento Médio de 15%, diz Sindigás,” SINDIGAS, Rio de Janeiro, Brazil, accessed Sept. 15, 2015, http://www.sindigas.com.br/noticia/interna.aspx?id=7945
ABNT-Associação Brasileira de Normas Técnicas, 2011, “ NBR 13.148: Fogões, Fogões de Mesa, Fornos e Fogareiros a gás de uso Industrial—Terminologia,” ABNT, São Paulo, Brazil, p. 58.
Turns, S. R. , 2013, Introdução à Combustão: Conceitos e Aplicações, 3rd ed., AMGH, Porto Alegre, Brazil.
Hou, S.-S. , Lee, C.-Y. , and Lin, T.-H. , 2007, “ Efficiency and Emissions of a New Domestic Gas Burner With a Swirling Flame,” Energy Convers. Manage., 48(5), pp. 1401–1410. [CrossRef]
Li, H. B. , Wong, T. T., Leung, C. W., and Probert, S. D., 2006, “ Thermal Performances and CO Emissions of Gas-Fired Cooker-Top Burners,” Appl. Energy, 83(12), pp. 1326–1338. [CrossRef]
Zhang, Y. , Qin, C. , Xing, H. , and Liu, P. , 2013, “ Experimental Research on Performance Response of Domestic Gas Cookers to Variable Natural Gas Constituents,” J. Nat. Gas Sci. Eng., 10(1), pp. 41–50. [CrossRef]
Ko, Y.-C. , and Lin, T.-H. , 2003, “ Emissions and Efficiency of a Domestic Gas Stove Burning Natural Gases With Various Compositions,” Energy Convers. Manage., 44(19), pp. 3001–3014. [CrossRef]
INMETRO–Instituto Nacional de Metrologia, Qualidade e Tecnologia, 2012, “ Portaria 400/2012—Requisitos de Avaliação da Conformidade Para Fogões e Fornos a gás de uso Doméstico,” INMETRO, Rio de Janeiro, Brazil, p. 3.
PETROBRÁS, 2013, “ Gás Liquefeito de Petróleo–Informações Técnicas (Versão 1.2),” PETROBRAS, Rio de Janeiro, Brazil, accessed Sept. 15, 2015, http://sites.petrobras.com.br/minisite/assistenciatecnica/public/downloads/manual-tecnico-gas-liquefeito-petrobras-assistencia-tecnica-petrobras.pdf
Yaws, C. L. , 2001, Matheson Gas Data Book, 7th ed., McGraw-Hill Professional, Parsippany, NJ, p. 982.
Balbinot, A. , and Brusamarello, V. J. , 2010, Instrumentação e Fundamentos de Medidas, 2nd ed., Vol. 1, LTC, Rio de Janeiro, Brazil, p. 385.
ABNT-Associação Brasileira de Normas Técnicas, 2003, “ NBR 13723-1: Aparelho Doméstico de Cocção a gás Parte 1: Desempenho e Segurança,” ABNT, São Paulo, Brazil, p. 58.
ABNT–Associação Brasileira de Normas Técnicas, 1999, “ NBR 13723-2: Aparelho Doméstico de Cocção a gás Parte 2: Uso Racional de Energia,” ABNT, São Paulo, Brazil, p. 3.
Garcia, R. , 2002, Combustíveis e Combustão Industrial, 1st ed., Interciência, Rio de Janeiro, Brazil.
Rocha, M. S. , Neto, E. P. , Panella, L. S. , Ferreira, E. S. , and Moreira, J. R. S. , 2010, “ Conversion Methods for Commercial Stoves From LPG to Natural Gas Firing,” 13th Brazilian Congress of Thermal Sciences and Engineering—ENCIT, Uberlândia, Brazil, Dec. 5–10, p. 7.
Makmool, U. , and Jugjai, S. , 2013, “ Thermal Efficiency and Pollutant Emissions of Domestic Cooking Burners Using DME-LPG Blends as a Fuel,” Fourth TSME International Conference on Mechanical Engineering, Parraya, Chonburi, Oct. 16–18, p. 8.
Zhen, H. S. , Leung, C. W. , and Wong, T. T. , 2014, “ Improvement of Domestic Cooking Flames by Utilizing Swirling Flows,” Fuel, 119(1), pp. 153–156. [CrossRef]
ISO–International Organization for Standardization, 2011, “ Safety and Control Devices for Gas Burners and Gas-Burning Appliances—General Requirements,” ISO, Geneva, Switzerland, p. 41, Standard No. ISO 23550:2011.
ATLAS, 2015, “ Fogão Tropical Plus 4 Bocas,” ATLAS, Pato Branco, Brazil, accessed Sept. 15, 2015, http://www.atlas.ind.br/site/pt/produtos/49/fogao-a-gas-tropical-plus-4-bocas
Nabi, M. N. , 2010, “ Theoretical Investigation of Engine Thermal Efficiency, Adiabatic Flame Temperature, NOx Emission and Combustion-Related Parameters for Different Oxygenated Fuels,” Appl. Therm. Eng., 30(8–9), pp. 839–844. [CrossRef]
Nogueira, L. A. H. , Cardoso, R. B. , Cavalcanti, C. Z. B. , and Leonelli, P. A. , 2015, “ Evaluation of the Energy Impacts of the Energy Efficiency Law in Brazil,” Energy Sustainable Dev., 24(1), pp. 58–69. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Experimental apparatus, TP levels (handle position selector) and Brazilian label

Grahic Jump Location
Fig. 2

Burner—top and frontal views

Grahic Jump Location
Fig. 3

Heating capacity tests on β burners—water temperature increases at different TP conditions

Grahic Jump Location
Fig. 4

Nominal thermal power behavior—Burners “α” (left) and β (right)

Grahic Jump Location
Fig. 6

Reynolds influence on efficiency (heating test)

Grahic Jump Location
Fig. 5

Thermal efficiency changes for different handle position selection

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In