0
Research Papers

Conjugate Mixed Convection Heat Transfer From a Shrouded Vertical Nonisothermal Heat Sink

[+] Author and Article Information
Biplab Das

Department of Mechanical Engineering,
National Institute of Technology Silchar,
Silchar, Assam 788010, India
e-mail: biplab.2kmech@gmail.com

Asis Giri

Department of Mechanical Engineering,
North Eastern Regional Institute of Science
and Technology,
Itanagar, Arunachal Pradesh 791109, India
e-mail: measisgiri@rediffmail.com

Suman Debnath

Department of Mechanical Engineering,
National Institute of Technology Silchar,
Silchar, Assam 788010, India
e-mail: debnath.s1990@gmail.com

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received March 10, 2016; final manuscript received January 10, 2017; published online March 21, 2017. Assoc. Editor: Hongbin Ma.

J. Thermal Sci. Eng. Appl 9(4), 041001 (Mar 21, 2017) (14 pages) Paper No: TSEA-16-1061; doi: 10.1115/1.4035970 History: Received March 10, 2016; Revised January 10, 2017

A computational analysis of conjugate mixed convection heat transfer from shrouded vertical nonisothermal heat sink on a horizontal base is performed. The overall Nusselt number and the product of friction factor (f) and Reynolds number (Re) are found to vary significantly with the spacing of heat sink as well as with the clearance between shroud and heat sink. By increasing the fin conductance by 200%, an enhancement of Nusselt number is noted to be around 58%, while the same Nusselt number enhancement is 134% for isothermal fin, within the range of parametric studies. The fRe value for smaller fin spacing shows a maximum with clearances, while the same for higher fin spacing remains the same or increases with clearances. Finally, overall Nusselt number and friction factor are well correlated with the governing parameters of the problem.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Starner, K. E. , and McManus, H. N. , 1963, “ An Experimental Investigation of Free Convection Heat Transfer From Rectangular Fin-Arrays,” ASME J. Heat Transfer, 85(3), pp. 273–278. [CrossRef]
Welling, J. R. , and Wooldridge, C. V. , 1965, “ Free Convection Heat Transfer Coefficients From Rectangular Vertical Fins,” ASME J. Heat Transfer, 87(4), pp. 439–444. [CrossRef]
Harahap, F. , and McManus, H. N. , 1967, “ Natural Convection Heat Transfer From Horizontal Rectangular Fin Arrays,” ASME J. Heat Transfer, 89(1), pp. 32–38. [CrossRef]
Jones, C. D. , and Smith, L. F. , 1970, “ Optimum Arrangement of Rectangular Fins on Horizontal Surfaces for Free Convection Heat Transfer,” ASME J. Heat Transfer, 92(1), pp. 6–10. [CrossRef]
Fisher, T. S. , and Torrance, K. E. , 1999, “ Experiments on Chimney-Enhanced Free Convection,” ASME J. Heat Transfer, 121(3), pp. 603–609. [CrossRef]
Yazicioğlu, B. , and Yüncü, H. , 2007, “ Optimum Fin Spacing of Rectangular Fins on a Vertical Base in Free Convection Heat Transfer,” Heat Mass Transfer, 44(1), pp. 11–21. [CrossRef]
Karki, K. C. , and Patankar, S. V. , 1987, “ Cooling of a Vertical Shrouded Fin Array by Natural Convection: A Numerical Study,” ASME J. Heat Transfer, 109(3), pp. 671–676. [CrossRef]
Rao, V. R. , and Venkateshan, S. P. , 1996, “ Experimental Study of Free Convection and Radiation in Horizontal Fin Arrays,” Int. J. Heat Mass Transfer, 39(4), pp. 779–789. [CrossRef]
Balaji, C. , and Venkateshan, S. P. , 1995, “ Combined Conduction, Convection and Radiation in a Slot,” Int. J. Heat Fluid Flow, 16(2), pp. 139–144. [CrossRef]
Rao, V. D. , Naidu, S. V. , Rao, B. G. , and Sharma, K. V. , 2006, “ Heat Transfer From a Horizontal Fin Array by Natural Convection and Radiation–A Conjugate Analysis,” Int. J. Heat Mass Transfer, 49(19–20), pp. 3379–3391. [CrossRef]
Yüncü, H. , and Anbar, G. , 1998, “ An Experimental Investigation on Performance of Rectangular Fins on Horizontal Base in Free Convection Heat Transfer,” Heat Mass Transfer, 33(5), pp. 507–514.
Baskaya, S. , Sivrioglu, M. , and Ozek, M. , 2000, “ Parametric Study of Natural Convection Heat Transfer From Horizontal Rectangular Fin Array,” Int. J. Therm. Sci., 39(8), pp. 797–805. [CrossRef]
Dayan, A. , Kushnir, R. , Mittelman, G. , and Ullmann, A. , 2004, “ Laminar Free Convection Underneath a Downward Facing Hot Fin Array,” Int. J. Heat Mass Transfer, 47(12–13), pp. 2849–2860. [CrossRef]
Sparrow, E. M. , Baliga, B. R. , and Patankar, S. V. , 1978, “ Forced Convection Heat Transfer From a Shrouded Fin Array With and Without Tip Clearance,” ASME J. Heat Transfer, 100(4), pp. 572–579. [CrossRef]
Sparrow, E. M. , and Kadle, D. S. , 1986, “ Effect of Tip to Shroud Clearance on Turbulent Heat Transfer From a Shrouded, Longitudinal Fin Array,” ASME J. Heat Transfer, 108(3), pp. 519–524. [CrossRef]
Kadle, D. S. , and Sparrow, E. M. , 1986, “ Numerical and Experimental Study of Turbulent Heat Transfer and Fluid Flow in Longitudinal Fin Array,” ASME J. Heat Transfer, 108(1), pp. 16–23. [CrossRef]
El-Sayed, S. A. , Mohamad, S. M. , Abdel-Latif, A. M. , and Abouda, A. E. , 2002, “ Investigation of Turbulent Heat Transfer and Fluid Flow in Longitudinal Rectangular-Fin Arrays of Different Geometries and Shrouded Fin Array,” Exp. Therm. Fluid Sci., 26(8), pp. 879–900. [CrossRef]
Elshafei, E. A. M. , 2007, “ Effect of Flow Bypass on the Performance of a Shrouded Longitudinal Fin Array,” Appl. Therm. Eng., 27(13), pp. 2233–2242. [CrossRef]
Zhang, Z. , and Patankar, S. V. , 1984, “ Influence of Buoyancy on the Vertical Flow and Heat Transfer in a Shrouded Fin Array,” Int. J. Heat Mass Transfer, 27(1), pp. 137–140. [CrossRef]
Al-Sarkhi, A. , Abu-Nada, E. , Akash, B. A. , and Jaber, J. O. , 2003, “ Numerical Investigation of Shrouded Fin Array Under Combined Free and Forced Convection,” Int. Commun. Heat Mass Transfer, 30(3), pp. 435–444. [CrossRef]
Giri, A. , and Das, B. , 2012, “ A Numerical Study of Entry Region Laminar Mixed Convection Over Shrouded Vertical Fin Arrays,” Int. J. Therm. Sci., 60, pp. 212–224. [CrossRef]
Das, B. , and Giri, A. , 2014, “ Non-Boussinesq Laminar Mixed Convection in a Non-Isothermal Fin Array,” Appl. Therm. Eng., 63(1), pp. 447–458. [CrossRef]
Das, B. , and Giri, A. , 2015, “ Mixed Convective Heat Transfer From Vertical Fin Array in the Presence of Vortex Generator,” Int. J. Heat Mass Transfer, 82, pp. 26–41. [CrossRef]
Acharya, S. , and Patankar, S. V. , 1981, “ Laminar Mixed Convection in Shrouded Fin Array,” ASME J. Heat Transfer, 103(3), pp. 559–565. [CrossRef]
Maughan, J. R. , and Incropera, F. P. , 1990, “ Mixed Convection Heat Transfer With Longitudinal Fins in a Horizontal Parallel Plate Channel—Part I: Numerical Results,” ASME J. Heat Transfer, 112(3), pp. 612–618. [CrossRef]
Maughan, J. R. , and Incropera, F. P. , 1990, “ Mixed Convection Heat Transfer With Longitudinal Fins in a Horizontal Parallel Plate Channel—Part II: Experimental Results,” ASME J. Heat Transfer, 112(3), pp. 619–624. [CrossRef]
Dogan, M. , and Sivrioglu, M. , 2009, “ Experimental Investigation of Mixed Convection Heat Transfer From Longitudinal Fins in Horizontal Rectangular Channel: In Natural Convection Dominated Flow Regimes,” Energy Convers. Manage., 50(10), pp. 2513–2521. [CrossRef]
Dogan, M. , and Sivrioglu, M. , 2010, “ Experimental Investigation of Mixed Convection Heat Transfer From Longitudinal Fins in Horizontal Rectangular Channel,” Int. J. Heat Mass Transfer, 53(9–10), pp. 2149–2158. [CrossRef]
Dogan, M. , and Sivrioglu, M. , 2012, “ Experimental and Numerical Investigation of Clearance Gap Effects on Laminar Mixed Convection Heat Transfer From Fin Array in a Horizontal Channel–A Conjugate Analysis,” Appl. Therm. Eng., 40, pp. 102–113. [CrossRef]
Das, B. , and Giri, A. , 2014, “ Conjugate Conduction and Convection Underneath a Downward Facing Non-Isothermal Extended Surface,” Energy Convers. Manage., 88, pp. 15–26. [CrossRef]
Patankar, S. V. , 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere/McGraw-Hill, New York.
Das, B. , and Giri, A. , 2014, “ Second Law Analysis of an Array of Vertical Plate-Finned Heat Sink Undergoing Mixed Convection,” Int. Commun. Heat Mass Transfer, 56, pp. 42–49. [CrossRef]
Das, B. , and Giri, A. , 2016, “ Combined Energy and Exergy Analysis of a Non-Isothermal Fin Array With Non-Boussinesq Variable Property Fluid,” ASME J. Therm. Sci. Eng. Appl., 8(3), p. 031010. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Schematic diagram of shrouded plate finned heat sink on a horizontal base and (b) computational domain

Grahic Jump Location
Fig. 2

Allocation of computational grid arrangement

Grahic Jump Location
Fig. 3

Streamline contours of the flow domain for Ω = 30: (a) S*= 0.1, C*= 0, Gr = 106, ψmax = 0.0215, (b) S*= 0.1, C*= 0, Gr = 107, ψmax = 0.215, (c) S*= 0.1, C*= 0.30, Gr = 106, ψmax = 0.127, (d) S*= 0.1, C*= 0.30, Gr = 107, ψmax = 3.3, (e) S*= 0.3, C*= 0, Gr = 106, ψmax = 1.876, (f) S*= 0.3, C*= 0, Gr = 107, ψmax = 9.54, (g) S*= 0.3, C*= 0.30, Gr = 106, ψmax = 3.0, and (h) S*= 0.3, C*= 0.30, Gr = 107, ψmax = 10.35

Grahic Jump Location
Fig. 4

W-velocity profile for Ω = 30: (a) S* = 0.1, C*= 0, Gr = 106, (b) S* = 0.1, C*= 0, Gr = 107, (c) S* = 0.1, C*= 0.30, Gr = 106, (d) S* = 0.1, C*= 0.30, Gr = 107, (e) S*= 0.3, C*= 0, Gr = 106, (f)S*= 0.3, C*= 0, Gr = 107, (g) S*= 0.3, C*= 0.30, Gr = 106, and (h) S*= 0.3, C*= 0.30, Gr = 107

Grahic Jump Location
Fig. 5

Variation of fin temperature along the fin height for Ω = 30: (a) S*= 0.1 and (b) S*= 0.3

Grahic Jump Location
Fig. 6

Temperature profile for Ω = 30: (a) S*= 0.1, C*= 0, Gr = 106, (b) S*= 0.1, C*= 0, Gr = 107, (c) S*= 0.1, C*= 0.30, Gr = 106, (d) S*= 0.1, C*= 0.30, Gr = 107, (e) S*= 0.3, C*= 0, Gr = 106, (f) S*= 0.3, C*= 0, Gr = 107, (g) S*= 0.3, C*= 0.30, Gr = 106, and (h) S*= 0.3, C*= 0.30, Gr = 107

Grahic Jump Location
Fig. 7

Local fin Nusselt number variation along the fin height for Ω = 30: (a) S*= 0.1 and (b) S*= 0.3

Grahic Jump Location
Fig. 8

Local base Nusselt number variation along the base for Ω = 30: (a) S*= 0.1 and (b) S*= 0.3

Grahic Jump Location
Fig. 9

Overall Nusselt number variation with clearance for (a) Ω = 10, Gr = 105, (b) Ω = 10, Gr = 106, (c) Ω = 10, Gr = 107, (d) Ω = 30, Gr = 105, (e) Ω = 30, Gr = 106, and (f) Ω = 30, Gr = 107

Grahic Jump Location
Fig. 10

Computed and correlated overall Nusselt number

Grahic Jump Location
Fig. 11

Mass bypass and fRe for Ω = 30: (a) Gr = 105, (b) Gr = 106, and (c) Gr = 107

Grahic Jump Location
Fig. 12

Computed and correlated fRe

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In