0
Technical Brief

Comparative Study of Thermal Conductivity Values of Different Percentage Compositions of Ground Arachis hypogea (Groundnut) Husk and Vigna unguiculata (Beans) Husk Compressed Fiberboards

[+] Author and Article Information
Sunday E. Etuk

Department of Physics,
University of Uyo,
Uyo 520103, Akwa Ibom, Nigeria

Akpan N. Ikot

Department of Physics,
University of Port Harcourt,
Choba 500262, Rivers State, Nigeria

Nyakno J. George

Department of Physics,
Akwa Ibom State University,
Ikot Akpaden 520102, Nigeria

Samuel D. Ekpe

Department of Electrical/Electronics,
University of Alberta,
Edmonton, AB T6G 2R3, Canada

Ekong U. Nathaniel

Department of Physics,
Akwa Ibom State University,
Ikot Akpaden 520103, Nigeria

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received May 1, 2015; final manuscript received August 11, 2015; published online November 17, 2015. Assoc. Editor: Srinath V. Ekkad.

J. Thermal Sci. Eng. Appl 8(2), 024501 (Nov 17, 2015) (4 pages) Paper No: TSEA-15-1132; doi: 10.1115/1.4031887 History: Received May 01, 2015; Revised August 11, 2015

Thermal conductivity values of compressed boards made of ground Arachis hypogea husk and Vigna unguiculata husk as binder at different percentage compositions at a temperature of 303 K were investigated using steady-state method. Other thermal properties including specific heat capacity, density, thermal absorptivity, and diffusivity values were also estimated for the prepared samples. Comparative studies of the determined values for the board at different proportions or ratios of combination of A. hypogeal ground husk with V. unguiculata ground husk reveal that thermal conductivity value decreases with an increase in the percentage content of A. hypogea husk contents. A fitting polynomial regression analysis reveals a correlation coefficient of 99.6%. The range of thermal conductivity values falls within the range of conventional good thermal insulators. Thus, the husks are potential ecofriendly raw materials for insulation board for cold building design and other thermal envelops.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Szelagowski, H. , Arvantidis, I. , and Seetharaman, S. , 1999, “ Effective Thermal Conductivity of Porous Strontium Oxide and Strontium Carbonate Sample,” J. Appl. Phys., 85(1), pp. 193–198. [CrossRef]
Ajibola, K. , and Onobanjo, B. O. , 1995, “ Investigation of Cocos nucifera as a Potential Insulator for Buildings,” Renewable Energy, 6(1), pp. 81–85. [CrossRef]
Akpabio, L. E. , Ekpe, S. D. , Etuk, S. E. , and Essien, K. E. , 2001, “ Thermal Properties of Oil Palm Fibres,” Global J. Pure Appl. Sci., 7(3), pp. 575–578.
Etuk, S. E. , Akpabio, I. O. , and Udo, E. M. , 2003, “ Comparison of the Thermal Properties of Clay Samples as Potential Walling Material for Naturally Cooled Building Design,” J. Environ. Sci., 15(1), pp. 65–68.
Etuk, S. E. , and Akpabio, L. E. , 2004, “ Investigation of Ceiba pentandra Cotton as a Potential Thermal Insulators,” JORMAR, 1(1), pp. 4–10.
Beck, A. , Heinemann, M. , and Fircke, J. E. , 2004, “ Thermal Transport in Straw Insulation,” J. Therm. Env. Build. Sci., 3(5), pp. 227–234.
Twidell, J. , and Weir, T. , 1990, Renewable Energy Resources, E & FN Spon, London, p. 418.
Sayigh, A. A. M. , 1978, “ The Technology of Flat Plate Collector,” Solar Energy Conversion: An Introductory Course, University of Waterloo Ontario, Canada, p. 108
Etuk, S. E. , Akpabio, L. E. , and Akpan, I. O. , 2010, “ Comparative Study of Thermal Transport in Zea mays Straw and Zea mays Heartwood (Cork) Boards,” Therm. Sci., 14(1), pp. 31–38. [CrossRef]
Etuk, S. E. , 2012, “ Investigation Into Some Thermophysical Properties of Some Materials of Plant Product: Elaeis guineensis, Raphia hookeri, Musanga cecropioides, Macaranga barteri, Cocos nucifera and Zea mays,” Higher National Diploma (HND) thesis, Nigerian Institute of Science Laboratory Technology, Ibadan, Nigeria.
Bouguerra, A. , Laurent, J. P. , Goual, M. S. , and Queneudec, M. , 1997, “ The Measurement of the Thermal Conductivity of Solid Aggregates Using the Transient Plane Method Technique,” J. Phys. D: Appl. Phys., 30(20), pp. 2900–2904. [CrossRef]
Li, B.-C. , and Zhang, S.-Y. , 1997, “ The Effect of Interface Resistance on Thermal Wave Propagation in Multi-Layered Samples,” J. Phys. D: Appl. Phys., 30(10), pp. 1447–1454. [CrossRef]
Suleiman, B. M. , Gustavsson, M. , Karawack, E. , and Lundein, A. , 1997, “ Thermal Properties of Lithium Sulphate,” J. Phys. D: Appl. Phys., 30(18), pp. 2553–2560. [CrossRef]
Jaramillo, O. A. , del Rio, J. A. , and Huelsz, G. , 1999, “ A Thermal Study of Optical Fibres Transmitting Concentrated Solar Energy,” J. Phys. D: Appl. Phys., 32(9), pp. 1000–1005. [CrossRef]
Galovic, S. , and Dramicanin, M. D. , 1999, “ Numerical Simulation of Photothermal Effects in Solids With Inhomogeneous Thermal Properties,” J. Phys. D: Appl. Phys., 33(13), pp. 1511–1516. [CrossRef]
Bourguerra, A. , 1999, “ Temperature and Moisture Dependence on the Thermal Conductivity of Wood-Cement-Based Composite: Experimental and Theoretical Analysis,” J. Phys. D: Appl. Phys., 32(21), pp. 2797–2803. [CrossRef]
Bourguerra, A. , 1999, “ Predication of Effective Thermal Conductivity of Moist Wood Concrete,” J. Phys. D: Appl. Phys., 32(12), pp. 1407–1414. [CrossRef]
Fiege, G. B. M. , Altes, A. , Heiderhoff, R. , and Balk, L. J. , 1999, “ Quantitative Thermal Conductivity Measurements With Nanometre Resolution,” J. Phys. D: Appl. Phys., 32(5), pp. L13–L17. [CrossRef]
Ronchi, C. , Sheindlin, M. , and Musella, M. , 1999, “ Thermal Conductivity of Uranium Dioxide up to 2900 K From Simultaneous Measurement of the Heat Capacity and Thermal Diffusivity,” J. Appl. Phys., 85(2), pp. 776–789. [CrossRef]
Silva, T. S. , Alves, A. S. , Pepe, I. , Tsuzuki, H. , Nakamura, O. , and d'Angular Neto, M. M. F. , 1998, “ Thermal Diffusivity of Lead Iodide,” J. Appl. Phys., 83(11), pp. 6193–6195. [CrossRef]
Hutchinson, J. , and Daiziel, J. M. , 1973, Flora of West Africa, 2nd ed., Vol. 2, Whye Friars Press, London, p. 567.
Umoren, S. A. , Obot, I. B. , Akpabio, L. E. , and Etuk, S. E. , 2008, “ Adsorption and Corrotive Inhibitive Properties of Vigna unguiculata in Alkaline and Acidic Media,” Pigm. Resin Technol., 37(2), pp. 98–105. [CrossRef]
United States of America Forest Products Laboratory, 1974, Wood Handbook: Wood as an Engineering Material, U. S. Government Printing Office, Washington, DC.
Walker, J. E. L. , 1972, The Biology of Plants Phenolics, Edward Arnold, London, pp. 60–61.
Adeosun, B. F. , and Olaofe, O. , 2002, “ Thermodynamic Parameters of Stretching and Thermal Conductivity of Loaded Natural Rubber,” J. Chem. Soc. Niger., 27(2), pp. 128–129.
Jackson, R. D. , and Taylor, S. A. , 1965, “ Heat Transfer Method of Soil Analysis,” Agron. Monogr., 9(1), pp. 349–360.
Etuk, S. E. , Akpabio, L. E. , and Akpabio, K. E. , 2005, “ Determination of Thermal Properties of Cocos nucifera Trunk for Predicting Temperature Variation With Its Thickness,” Arabian J. Sci. Eng., 30(1B), pp. 121–126.
Walton, J. A. , 1970, Woodwork in Theory and Practice, 4th ed., Australian Publishing, Sydney, Australia.
Okeke, P. N. , Osuwa, J. C. , Menkiti, A. I. , Ofuegbu, C. O. , Okeke, C. E. , and Emereole, H. U. , 1991, Preliminary Practical Physics Manual ( Nigerian University Physics Series, Vol. 2), Africana-FEP, Nigeria, pp. 112–113.
Tyler, F. , 1971, A Laboratory Manual of Physics, 4th ed. (S I Version), Edward Arnold, London, pp. 112–113.
Ekpe, S. D. , Akpabio, L. E. , and Eno, E. E. , 1996, “ Thermal Properties of Soil Samples in Uyo Local Government Area of Akwa Ibom State, Nigeria,” Global J. Pure Appl. Sci., 2(1), pp. 45–52.
Liebe, J. , Kang, H. , Haupt, L. , Mandal, P. , Medvedeva, I. V. , Rao, G. H. , Barner, K. , Poddar, A. , Murugura, P. , Fischer, R. , Gmelin, E. , Gommert, E. , Helmott, R. V. , and Wecker, J. , 1998, “ Heat Diffusivity of Nd1xSrxMno3−δ La1xCaxMno3δ Compounds,” J. Appl. Phys., 83(11), pp. 7148–7150. [CrossRef]
Khatry, A. B. , Sodha, M. S. , and Malik, M. A. S. , 1978, “ Periodic Variation of Ground Temperature With Depth,” Sol. Energy, 20(5), pp. 425–427. [CrossRef]
Sodha, M. S. , Goyal, I. C. , Kaushiks, C. , Tiwari, G. N. , and Seth, A. K. , 1997, “ Periodic Heat Transfer With Temperature Dependent Thermal Conductivity,” Int. J. Heat Mass Transfer, 22(5), pp. 281–777.
Tozluoglu, A. , 2008, “ Utilizing Peanut Husk (Arachis hypogea),” Bioresour. Technol., 99(13), pp. 5590–5594. [CrossRef] [PubMed]
Marsh, R. W. , and Olivo, C. T. , 1979, Basics of Refrigeration, 2nd ed., Van Nostrand Reinhold, New York, p. 126.

Figures

Grahic Jump Location
Fig. 1

Regression curve of thermal conductivity of compressed component (%)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In