Pilkington,
L. A. B.
, 1969, “
Float Glass Process,” Proc. R. Soc. London, Ser. A,
314(1516), pp. 1–25.

[CrossRef]
Imberger,
J.
, and
Hamblin,
P.
, 1982, “
Dynamics of Lakes, Reservoirs, and Cooling Ponds,” Ann. Rev. Fluid Mech.,
14, pp. 153–187.

[CrossRef]
Cha,
C.
, and
Jaluria,
Y.
, 1984, “
Recirculating Mixed Convection Flow for Energy Extraction,” Int. J. Heat Mass Transfer,
27(10), pp. 1801–1812.

[CrossRef]
Roy,
B.
, 1992, Crystal Growth From Melts Applications to Growth of Groups 1 and 2 Crystals,
Wiley,
New York.

Jaluria,
Y.
, 2001, “
Fluid Flow Phenomena in Materials Processing—The 2000 Freeman Scholar Lecture,” ASME J. Fluids Eng.,
123(2), pp. 173–210.

[CrossRef]
Torrance,
K.
,
Zien,
H.
, and
Davis,
R.
, 1972, “
Cavity Flows Driven by Buoyancy and Shear,” Journal of Fluid Mechanics,
51(JAN25), pp. 221–231.

[CrossRef]
Moallemi,
M.
, and
Jang,
K.
, 1992, “
Prandtl Number Effects on Laminar Mixed Convection Heat-Transfer in a Lid-Driven Cavity,” Int. J. Heat Mass Transfer,
35(8), pp. 1881–1892.

[CrossRef]
Mohamad,
A. A.
, and
Viskanta,
R.
, 1992, “
Laminar-Flow and Heat-Transfer in Rayleigh–Benard Convection With Shear,” Phys. Fluids A,
4(10), pp. 2131–2140.

[CrossRef]
Mohamad,
A.
, and
Viskanta,
R.
, 1994, “
Flow Structures and Heat-Transfer in a Lid-Driven Cavity Filled With Liquid Gallium and Heated From Below,” Exp. Therm. Fluid Sci.,
9(3), pp. 309–319.

[CrossRef]
Mansour,
R. B.
, and
Viskanta,
R.
, 1994, “
Shear-Opposed Mixed Convection Flow and Heat-Transfer in a Narrow, Vertical-Cavity,” Int. J. Heat Fluid Flow,
15(6), pp. 462–469.

[CrossRef]
Iwatsu,
R.
,
Hyun,
J.
, and
Kuwahara,
K.
, 1993, “
Mixed Convection in a Driven Cavity With a Stable Vertical Temperature-Gradient,” Int. J. Heat Mass Transfer,
36(6), pp. 1601–1608.

[CrossRef]
Iwatsu,
R.
, and
Hyun,
J.
, 1995, “
Three-Dimensional Driven-Cavity Flows With a Vertical Temperature-Gradient,” Int. J. Heat Mass Transfer,
38(18), pp. 3319–3328.

[CrossRef]
Mohamad,
A.
, and
Viskanta,
R.
, 1995, “
Flow and Heat-Transfer in a Lid-Driven Cavity Filled With a Stably Stratified Fluid,” Appl. Math. Modell.,
19(8), pp. 465–472.

[CrossRef]
Prasad,
A.
, and
Koseff,
J.
, 1996, “
Combined Forced and Natural Convection Heat Transfer in a Deep Lid Driven Cavity Flow,” Int. J. Heat Fluid Flow,
17(5), pp. 460–467.

[CrossRef]
Lee,
S. C.
, and
Chen,
C. K.
, 1996, “
Finite Element Solutions of Laminar and Turbulent Mixed Convection in a Driven Cavity,” Int. J. Numer. Methods Fluids,
23(1), pp. 47–64.

[CrossRef]
Alleborn,
N.
,
Raszillier,
H.
, and
Durst,
F.
, 1999, “
Lid-Driven Cavity With Heat and Mass Transport,” Int. J. Heat Mass Transfer,
42(5), pp. 833–853.

[CrossRef]
Chamkha,
A.
, and
Al-Naser,
H.
, 2001, “
Double-Diffusive Convection in an Inclined Porous Enclosure With Opposing Temperature and Concentration Gradients,” Int. J. Therm. Sci.,
40(3), pp. 227–244.

[CrossRef]
Chamkha,
A.
, 2002, “
Hydromagnetic Combined Convection Flow in a Vertical Lid-Driven Cavity With Internal Heat Generation or Absorption,” Numer. Heat Transfer, Part A,
41(5), pp. 529–546.

[CrossRef]
Shankar,
P.
,
Meleshko,
V.
, and
Nikiforovich,
E.
, 2002, “
Slow Mixed Convection in Rectangular Containers,” J. Fluid Mech.,
471, pp. 203–217.

[CrossRef]
Oztop,
H.
, and
Dagtekin,
I.
, 2004, “
Mixed Convection in Two-Sided Lid-Driven Differentially Heated Square Cavity,” Int. J. Heat Mass Transfer,
47(8–9), pp. 1761–1769.

[CrossRef]
Waheed,
M. A.
, 2009, “
Mixed Convective Heat Transfer in Rectangular Enclosures Driven by a Continuously Moving Horizontal Plate,” Int. J. Heat Mass Transfer,
52(21–22), pp. 5055–5063.

[CrossRef]
Cheng,
T. S.
, and
Liu,
W.-H.
, 2010, “
Effect of Temperature Gradient Orientation on the Characteristics of Mixed Convection Flow in a Lid-Driven Square Cavity,” Comput. Fluids,
39(6), pp. 965–978.

[CrossRef]
Cheng,
T. S.
, 2011, “
Characteristics of Mixed Convection Heat Transfer in a Lid-Driven Square Cavity With Various Richardson and Prandtl Numbers,” Int. J. Therm. Sci.,
50(2), pp. 197–205.

[CrossRef]
Bettaibi,
S.
,
Kuznik,
F.
, and
Sediki,
E.
, 2014, “
Hybrid Lattice Boltzmann Finite Difference Simulation of Mixed Convection Flows in a Lid-Driven Square Cavity,” Phys. Lett. A,
378(32–33), pp. 2429–2435.

[CrossRef]
Al-Mudhaf,
A.
, and
Chamkha,
A. J.
, 2004, “
Natural Convection of Liquid Metals in an Inclined Enclosure in the Presence of a Magnetic Field,” Int. J. Fluid Mech. Res.,
31(3), pp. 221–243.

[CrossRef]
Ogut,
E.
, 2008, “
Mixed Convection in an Inclined and Lid-Driven Rectangular Enclosure Heated and Cooled on Adjacent Walls,” Trans. Can. Soc. Mech. Eng.,
32(2), pp. 213–226.

Ogut,
E. B.
, 2010, “
Mixed Convection in an Inclined Lid-Driven Enclosure With a Constant Flux Heater Using Differential Quadrature (DQ) Method,” Int. J. Phys. Sci.,
5(15), pp. 2287–2303.

Darzi,
A. A. R.
,
Farhadi,
M.
, and
Sedighi,
K.
, 2011, “
Mixed Convection Simulation of Inclined Lid Driven Cavity Using Lattice Boltzmann Method,” Iran. J. Sci. Technol.,
35(M1), pp. 73–83.

Karimipour,
A.
,
Nezhad,
A. H.
, and
D'Orazio,
A.
, 2013, “
The Effects of Inclination Angle and Prandtl Number on the Mixed Convection in the Inclined Lid Driven Cavity Using Lattice Boltzmann Method,” J. Theor. Appl. Mech.,
51(2), pp. 447–462.

Mekroussi,
S.
,
Nehari,
D.
, and
Bouzit,
M.
, 2013, “
Analysis of Mixed Convection in an Inclined Lid-Driven Cavity With a Wavy Wall,” J. Mech. Sci. Technol.,
27(7), pp. 2181–2190.

[CrossRef]
Sivasankaran,
S.
,
Sivakumar,
V.
, and
Hussein,
A. K.
, 2013, “
Numerical Study on Mixed Convection in an Inclined Lid-Driven Cavity With Discrete Heating,” Int. Commun. Heat Mass Transfer,
46, pp. 112–125.

[CrossRef]
Cheng,
T. S.
, and
Liu,
W.-H.
, 2014, “
Effects of Cavity Inclination on Mixed Convection Heat Transfer in Lid-Driven Cavity Flows,” Comput. Fluids,
100, pp. 108–122.

[CrossRef]
Sivakumar,
V.
, and
Sivasankaran,
S.
, 2014, “
Mixed Convection in an Inclined Lid-Driven Cavity With Non-Uniform Heating on Both Sidewalls,” ASME J. Appl. Mech. Tech. Phys.,
55(4), pp. 634–649.

[CrossRef]
Hajmohammadi,
M. R.
,
Maleki,
H.
, and
Lorenzini,
G.
, 2015, “
Effects of Cu and Ag Nano-Particles on Flow and Heat Transfer From Permeable Surfaces,” Adv. Powder Technol.,
26(1), pp. 193–199.

[CrossRef]
Abu-Nada,
E.
, and
Chamkha,
A. J.
, 2010, “
Mixed Convection Flow in a Lid-Driven Inclined Square Enclosure Filled With a Nanofluid,” Eur. J. Mech. B,
29(6), pp. 472–482.

[CrossRef]
Mansour,
M. A.
,
Mohamed,
R. A.
, and
Abd-Elaziz,
M. M.
, 2010, “
Numerical Simulation of Mixed Convection Flows in a Square Lid-Driven Cavity Partially Heated From Below Using Nanofluid,” Int. Commun. Heat Mass Transfer,
37(10), pp. 1504–1512.

[CrossRef]
Muthtamilselvan,
M.
,
Kandaswamy,
P.
, and
Lee,
J.
, 2010, “
Heat Transfer Enhancement of Copper–Water Nanofluids in a Lid-Driven Enclosure,” Commun. Nonlinear Sci. Numer. Simul.,
15(6), pp. 1501–1510.

[CrossRef]
Talebi,
F.
,
Mahmoudi,
A. H.
, and
Shahi,
M.
, 2010, “
Numerical Study of Mixed Convection Flows in a Square Lid-Driven Cavity Utilizing Nanofluid,” Int. Commun. Heat Mass Transfer,
37(1), pp. 79–90.

[CrossRef]
Alinia,
M.
,
Ganji,
D. D.
, and
Gorji-Bandpy,
M.
, 2011, “
Numerical Study of Mixed Convection in an Inclined Two Sided Lid Driven Cavity Filled With Nanofluid Using Two-Phase Mixture Model,” Int. Commun. Heat Mass Transfer,
38(10), pp. 1428–1435.

[CrossRef]
Kahveci,
K.
, and
Ogut,
E. B.
, 2011, “
Mixed Convection of Water-Based Nanofluids in a Lid-Driven Square Enclosure With a Heat Source,” Heat Transfer Res.,
42(8), pp. 711–735.

[CrossRef]
Mahmoodi,
M.
, 2011, “
Mixed Convection Inside Nanofluid Filled Rectangular Enclosures With Moving Bottom Wall,” Therm. Sci.,
15(3), pp. 889–903.

[CrossRef]
Arani,
A. A. A.
,
Sebdani,
S. M.
, and
Mahmoodi,
M.
, 2012, “
Numerical Study of Mixed Convection Flow in a Lid-Driven Cavity With Sinusoidal Heating on Sidewalls Using Nanofluid,” Superlattices Microstruct.,
51(6), pp. 893–911.

[CrossRef]
Chamkha,
A. J.
, and
Abu-Nada,
E.
, 2012, “
Mixed Convection Flow in Single- and Double-Lid Driven Square Cavities Filled With Water–Al

_{2}O

_{3} Nanofluid: Effect of Viscosity Models,” Eur. J. Mech. B,
36, pp. 82–96.

[CrossRef]
Mansour,
M. A.
, and
Ahmed,
S. E.
, 2012, “
Mixed Convection Flows in a Square Lid-Driven Cavity With Heat Source at the Bottom Utilising Nanofluid,” Can. J. Chem. Eng.,
90(1), pp. 100–110.

[CrossRef]
Rahman,
M. M.
,
Billah,
M. M.
, and
Hasanuzzaman,
M.
, 2012, “
Heat Transfer Enhancement of Nanofluids in a Lid-Driven Square Enclosure,” Numer. Heat Transfer, Part A,
62(12), pp. 973–991.

[CrossRef]
Salari,
M.
,
Tabar,
M. M.
, and
Tabar,
A. M.
, 2012, “
Mixed Convection of Nanofluid Flows in a Square Lid-Driven Cavity Heated Partially From Both the Bottom and Side Walls,” Numer. Heat Transfer, Part A,
62(2), pp. 158–177.

Cho,
C.
,
Chen,
C.
, and
Chen,
C.
, 2013, “
Mixed Convection Heat Transfer Performance of Water-Based Nanofluids in Lid-Driven Cavity With Wavy Surfaces,” Int. J. Therm. Sci.,
68, pp. 181–190.

[CrossRef]
Esfe,
M. H.
,
Ghadi,
A. Z.
, and
Noroozi,
M. J.
, 2013, “
Numerical Simulation of Mixed Convection Within Nanofluid-Filled Cavities With Two Adjacent Moving Walls,” Trans. Can. Soc. Mech. Eng.,
37(4), pp. 1073–1089.

Fereidoon,
A.
,
Saedodin,
S.
, and
Esfe,
M. H.
, 2013, “
Evaluation of Mixed Convection in Inclined Square Lid-Driven Cavity Filled With Al_{2}O_{3}/Water Nano-Fluid,” Eng. Appl. Comput. Fluid Mech.,
7(1), pp. 55–65.

Hussein,
A. K.
,
Ahmed,
S. E.
, and
Mohammed,
H. A.
, 2013, “
Mixed Convection of Water-Based Nanofluids in a Rectangular Inclined Lid-Driven Cavity Partially Heated From Its Left Side Wall,” J. Comput. Theor. Nanosci.,
10(9), pp. 2222–2233.

[CrossRef]
Li,
D.
,
Wang,
X.
, and
Feng,
H.
, 2013, “
Fully HOC Scheme for Mixed Convection Flow in a Lid-Driven Cavity Filled With a Nanofluid,” Adv. Appl. Math. Mech.,
5(1), pp. 55–77.

[CrossRef]
Mansour,
M. A.
, and
Ahmed,
S. E.
, 2013, “
Mixed Convection in Double Lid-Driven Enclosures Filled With Al

_{2}O

_{3}–Water Nanofluid,” J. Thermophys. Heat Transfer,
27(4), pp. 707–718.

[CrossRef]
Abu-Nada,
E.
, and
Chamkha,
A. J.
, 2014, “
Mixed Convection Flow of a Nanofluid in a Lid-Driven Cavity With a Wavy Wall,” Int. Commun. Heat Mass Transfer,
57, pp. 36–47.

[CrossRef]
Esfe,
M. H.
,
Akbari,
M.
, and
Toghraie,
D.
, 2014, “
Effect of Nanofluid Variable Properties on Mixed Convection Flow and Heat Transfer in an Inclined Two-Sided Lid-Driven Cavity With Sinusoidal Heating on Sidewalls,” Heat Transfer Res.,
45(5), pp. 409–432.

[CrossRef]
Faridzadeh,
M. R.
,
Semiromi,
D. T.
, and
Niroomand,
A.
, 2014, “
Analysis of Laminar Mixed Convection in an Inclined Square Lid-Driven Cavity With a Nanofluid by Using an Artificial Neural Network,” Heat Transfer Res.,
45(4), pp. 361–390.

[CrossRef]
Heydari,
M. R.
,
Esfe,
M. H.
, and
Hajmohammad,
M. H.
, 2014, “
Mixed Convection Heat Transfer in a Double Lid-Driven Inclined Square Enclosure Subjected to Cu–Water Nanofluid With Particle Diameter of 90 Nm,” Heat Transfer Res.,
45(1), pp. 75–95.

[CrossRef]
Karimipour,
A.
,
Esfe,
M. H.
, and
Safaei,
M. R.
, 2014, “
Mixed Convection of Copper–Water Nanofluid in a Shallow Inclined Lid Driven Cavity Using the Lattice Boltzmann Method,” Physica A,
402, pp. 150–168.

[CrossRef]
Muthtamilselvan,
M.
, and
Doh,
D. H.
, 2014, “
Mixed Convection of Heat Generating Nanofluid in a Lid-Driven Cavity With Uniform and Non-Uniform Heating of Bottom Wall,” Appl. Math. Modell.,
38(13), pp. 3164–3174.

[CrossRef]
Nasrin,
R.
,
Alim,
M. A.
, and
Chamkha,
A. J.
, 2014, “
Modeling of Mixed Convective Heat Transfer Utilizing Nanofluid in a Double Lid-Driven Chamber With Internal Heat Generation,” Int. J. Numer. Methods Heat Fluid Flow,
24(1), pp. 36–57.

[CrossRef]
Ogut,
E. B.
, and
Kahveci,
K.
, 2014, “
Mixed Convection of Water-Based Nanofluids in a Square Enclosure Heated and Cooled on Adjacent Walls,” Prog. Comput. Fluid Dyn.,
14(5), pp. 328–340.

[CrossRef]
Sivasankaran,
S.
, and
Pan,
K. L.
, 2014, “
Natural Convection of Nanofluids in a Cavity With Nonuniform Temperature Distributions on Side Walls,” Numer. Heat Transfer, Part A,
65(3), pp. 247–268.

[CrossRef]
Sharif,
M. A. R.
, 2007, “
Laminar Mixed Convection in Shallow Inclined Driven Cavities With Hot Moving Lid on Top and Cooled From Bottom,” Appl. Therm. Eng.,
27(5–6), pp. 1036–1042.

[CrossRef]
Oztop,
H. F.
, and
Abu-Nada,
E.
, 2008, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids,” Int. J. Heat Fluid Flow,
29(5), pp. 1326–1336.

[CrossRef]
Brinkman,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solutions,” J. Chem. Phys.,
20, p. 571.

[CrossRef]
Ho,
C. J.
,
Chen,
M. W.
, and
Li,
Z. W.
, 2008, “
Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity,” Int. J. Heat Mass Transfer,
51(17–18), pp. 4506–4516.

[CrossRef]
Aminossadati,
S. M.
, and
Ghasemi,
B.
, 2009, “
Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure,” Eur. J. Mech. B,
28(5), pp. 630–640.

[CrossRef]
Chon,
C.
,
Kihm,
K.
, and
Lee,
S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al

_{2}O

_{3}) Thermal Conductivity Enhancement,” Appl. Phys. Lett.,
87(15), p. 153107.

[CrossRef]
Masoumi,
N.
,
Sohrabi,
N.
, and
Behzadmehr,
A.
, 2009, “
A New Model for Calculating the Effective Viscosity of Nanofluids,” J. Phys. D: Appl. Phys.,
42(5), p. 055501.

[CrossRef]
Gul,
R.
,
Khan,
Z. H.
, and
Khan,
W. A.
, 2009, “
Heat Transfer From Solids With Variable Thermal Conductivity and Uniform Internal Heat Generation Using Homotopy Perturbation Method,” ASME Paper No. HT2008-56449.

Khan,
Z. H.
,
Gul,
R.
, and
Khan,
W. A.
, 2009, “
Effect of Variable Thermal Conductivity on Heat Transfer From a Hollow Sphere With Heat Generation Using Homotopy Perturbation Method,” ASME Paper No. HT2008-56448.

He,
J.
, 2003, “
Homotopy Perturbation Method: A New Nonlinear Analytical Technique,” Appl. Math. Comput.,
135(1), pp. 73–79.

[CrossRef]
Hajmohammadi,
M. R.
, and
Nourazar,
S. S.
, 2014, “
Conjugate Forced Convection Heat Transfer From a Heated Flat Plate of Finite Thickness and Temperature-Dependent Thermal Conductivity,” Heat Transfer Eng.,
35(9), pp. 863–874.

[CrossRef]