0
Research Papers

Heat and Mass Transfer in Planar Anode-Supported Solid Oxide Fuel Cells: Effects of Interconnect Fuel/Oxidant Channel Flow Cross Section

[+] Author and Article Information
Raj M. Manglik

Thermal-Fluids and Thermal Processing Laboratory,
Department of Mechanical and
Materials Engineering,
University of Cincinnati,
Cincinnati, OH 45221-0072
e-mail: Raj.Manglik@uc.edu

Yogesh N. Magar

Thermal-Fluids and Thermal Processing Laboratory,
Department of Mechanical and
Materials Engineering,
University of Cincinnati,
Cincinnati, OH 45221-0072
e-mail: Yogesh.Magar@us.bosch.com

See Refs. [46,47] for detailed descriptions of these wall-heat-transfer boundary conditions in the context of classical heat exchanger theory, and the associated forced convection in ducts.

1Corresponding author.

2Present address: Robert Bosch LLC, 601 NW 65th CT, Fort Lauderdale, FL 33309.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received May 27, 2014; final manuscript received April 27, 2015; published online June 9, 2015. Assoc. Editor: Bengt Sunden.

J. Thermal Sci. Eng. Appl 7(4), 041003 (Dec 01, 2015) (10 pages) Paper No: TSEA-14-1132; doi: 10.1115/1.4030636 History: Received May 27, 2014; Revised April 27, 2015; Online June 09, 2015

Heat and mass transfer in a planar anode-supported solid oxide fuel cell (SOFC) module, with bipolar-plate interconnect flow channels of different shapes are computationally simulated. The electrochemistry is modeled by uniform supply of volatile species (moist hydrogen) and oxidant (air) to the electrolyte surface with constant reaction rate via interconnect channels of rectangular, trapezoidal, and triangular cross sections. The governing three-dimensional equations for fluid mass, momentum, energy, and species transport, along with those for electrochemical kinetics, where the homogeneous porous-layer flow is in thermal equilibrium with the solid matrix, are coupled with the electrochemical reaction rate to properly account for the heat and mass transfer across flow-ducts and electrode-interfaces. The results highlight effects of interconnect duct shapes on lateral temperature and species distributions as well as the attendant frictional losses and heat transfer coefficients. It is seen that a relatively shallow rectangular duct offers better heat and mass transfer performance to affect improved thermal management of a planar SOFC.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sorensen, B., 2005, Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier, Oxford, UK.
Yokokawa, H., Tu, H., Iwanschitz, B., and Mai, A., 2008, “Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability,” J. Power Sources, 182(2), pp. 400–412. [CrossRef]
Srinivasan, S., 2006, Fuel Cells: From Fundamentals to Applications, Springer, Boston, MA.
Sammes, N. M., 2006, Fuel Cell Technology: Reaching Towards Commercialization, Springer, London, UK. [CrossRef]
Yamamoto, O., 2000, “Solid Oxide Fuel Cells: Fundamental Aspects and Prospects,” Electrochim. Acta, 45(15–16), pp. 2423–2435. [CrossRef]
Singhal, S. C., and Kendall, K., 2003, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, Oxford, UK.
Yokokawa, H., Sakai, N., Horita, T., and Yamaji, K., 2001, “Recent Developments in Solid Oxide Fuel Cell Materials,” Fuel Cells, 1(2), pp. 117–131. [CrossRef]
Steele, B. C. H., and Heinzel, A., 2001, “Materials for Fuel-Cell Technologies,” Nature, 414(6861), pp. 345–352. [CrossRef] [PubMed]
Yuan, J., and Sundén, B., 2006, “Analysis of Chemically Reacting Transport Phenomena in an Anode Duct of Intermediate Temperature SOFCs,” ASME J. Fuel Cell Sci. Technol., 3(2), pp. 89–98. [CrossRef]
Magar, Y. N., and Manglik, R. M., 2007, “Modeling of Convective Heat and Mass Transfer Characteristics of Anode-Supported Planar Solid Oxide Fuel Cells,” ASME J. Fuel Cell Sci. Technol., 4(2), pp. 185–193. [CrossRef]
Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., and Yasuda, I., 2000, “Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell,” J. Power Sources, 86(1–2), pp. 423–431. [CrossRef]
Ohara, S., Maric, R., Zhang, X., Mukai, K., Fukui, T., Yoshida, H., Inagaki, T., and Miura, K., 2000, “High Performance Electrodes for Reduced Temperature Solid Oxide Fuel Cells With Doped Lanthenum Gallate Electrolyte, I. Ni-SDS Cermet Anode,” J. Power Sources, 86(1–2), pp. 455–458. [CrossRef]
Mertens, J., Haanappel, V. A. C., Tropartz, C., Herzhof, W., and Buchkermer, H. P., 2006, “The Electrochemical Performance of Anode-Supported SOFCs With LSM-Type Cathodes Produced by Alternative Processing Routes,” ASME J. Fuel Cell Sci. Technol., 3(2), pp. 125–130. [CrossRef]
Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., and Prinz, F. B., 2007, “High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation,” J. Electrochem. Soc., 154(1), pp. B20–B24. [CrossRef]
Fabbria, E., Magrasóa, A., and Pergolesi, D., 2014, “Low-Temperature Solid-Oxide Fuel Cells Based on Proton-Conducting Electrolytes,” MRS Bull., 39(9), pp. 792–797. [CrossRef]
Van Gestel, T., Sebold, D., and Buchkremer, H. P., 2015, “Processing of 8YSZ and CGO Thin Film Electrolyte Layers for Intermediate- and Low-Temperature SOFCs,” J. Eur. Ceram. Soc., 35(5), pp. 1505–1515. [CrossRef]
Evans, A. M. J., Stender, D., Schneider, C. W., Lippert, T., and Prestat, M., 2015, “Low-Temperature Micro-Solid Oxide Fuel Cells With Partially Amorphous La0.6Sr0.4CoO3δ Cathodes,” Adv. Energy Mater., 5(1), p. 1400747. [CrossRef]
Andersson, M., Yuan, J., and Sundén, B., 2014, “SOFC Cell Design Optimization Using the Finite Element Method Based CFD Approach,” Fuel Cells, 14(2), pp. 177–188. [CrossRef]
Wachsmana, E., Ishiharaa, T., and Kilner, J., 2014, “Low-Temperature Solid-Oxide Fuel Cells,” MRS Bull., 39(9), pp. 773–779. [CrossRef]
Ioselevich, A. S., and Kornyshev, A. A., 2001, “Phenomenological Theory of Solid Oxide Fuel Cell Anode,” Fuel Cells, 1(1), pp. 40–65. [CrossRef]
Virkar, A. V., Chen, J., Tanner, C. W., and Kim, J.-W., 2000, “The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells,” Solid State Ionics, 131(1–2), pp. 189–198. [CrossRef]
Sundén, B., and Faghri, M., 2005, Transport Phenomena in Fuel Cells, WIT Press, Southampton, UK. [CrossRef]
Andersson, M., Paradis, H., Yuan, J., and Sundén, B., 2013, “Three Dimensional Modeling of an Solid Oxide Fuel Cell Coupling Charge Transfer Phenomena With Transport Processes and Heat Generation,” Electrochim. Acta, 109, pp. 881–893. [CrossRef]
Inui, Y., Urata, A., Ito, N., Nakajima, T., and Tanaka, T., 2006, “Performance Simulation of Planar SOFC Using Mixed Hydrogen and Carbon Monoxide Gases as Fuel,” Energy Conv. Manage., 47(13–14), pp. 1738–1747. [CrossRef]
Ahmed, S., McPheeters, C., and Kumar, R., 1991, “Thermal–Hydraulic Model of a Monolithic Solid Oxide Fuel Cell,” J. Electrochem. Society, 138(9), pp. 2712–2718. [CrossRef]
Aguiar, P., Chadwik, D., and Kershenbaum, L., 2002, “Modeling of an Indirect Internal Reforming Solid Oxide Fuel Cell,” Chem. Eng. Sci., 57(10), pp. 1665–1677. [CrossRef]
Greene, E. S., Medeiros, M. G., and Chiu, W. K. S., 2005, “Application of an Anode Model to Investigate Physical Parameters in an Internal Reforming Solid-Oxide Fuel Cell,” ASME J. Fuel Cell Sci. Technol., 2(2), pp. 136–140. [CrossRef]
Nishimo, T., Iwai, H., and Suzuki, K., 2006, “Comprehensive Numerical Modeling and Analysis of a Cell-Based Indirect Internal Reforming Tubular SOFC,” ASME J. Fuel Cell Sci. Technol., 3(1), pp. 33–44. [CrossRef]
Haynes, C., and Wepfer, W. J., 2001, “Characterizing Heat Transfer Within a Commercial-Grade Tubular Solid Oxide Fuel Cell for Enhanced Thermal Management,” Int. J. Hydrogen Energy, 26(4), pp. 369–379. [CrossRef]
Iwata, M., Hikosaka, T., Morita, M., Iwanari, T., Itok, K., Onda, K., Esaki, Y., Salaki, Y., and Nagata, S., 2000, “Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions,” Solid State Ionics, 132(3–4), pp. 297–308. [CrossRef]
D'Epifanio, A., Fabbri, E., Di Bartolomeo, E., Licoccia, S., and Traversa, E., 2008, “Design of BaZr0.8Y0.2O3δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs),” Fuel Cells, 8(1), pp. 69–76. [CrossRef]
Dey, T., Das Sharma, A., Dutta, A., and Basu, R. N., 2014, “Transition Metal-Doped Yttria Stabilized Zirconia for Low Temperature Processing of Planar Anode-Supported Solid Oxide Fuel Cell,” J. Alloys Compd., 604, pp. 151–156. [CrossRef]
Van Roosamalen, J. A. M., and Cordfunke, E. H. P., 1992, “Chemical Reactivity and Interdiffusion of (La/Sr) MnO3 and (Zr,Y)O2 Solid Oxide Fuel Cell Cathode and Electrolyte Meterials,” Solid State Ionics, 52(4), pp. 303–312. [CrossRef]
Clausen, C., Bagger, C., Bildesorensen, J. B., and Horsewell, A., 1994, “Microstructural and Microchemical Characterization of the Interface Between La0.85Sr0.15MnO3 and Y2O3-Stabilized ZrO2,” Solid State Ionics, 70–71(Part 1), pp. 59–64. [CrossRef]
Cimenti, M., Co, A. C., Birss, V. I., and Hill, J. M., 2007, “Distortions in Electrochemical Impedance Spectroscopy Measurements Using 3-Electrode Methods in SOFC. I—Effect of Cell Geometry,” Fuel Cells, 7(5), pp. 364–376. [CrossRef]
Drucea, J., Télleza, H., and Hyodo, J., 2014, “Surface Segregation and Poisoning in Materials for Low-Temperature SOFCs,” MRS Bull., 39(9), pp. 810–815. [CrossRef]
Li, P.-W., and Chyu, M. K., 2005, “Electrochemical and Transport Phenomena in Solid Oxide Fuel Cells,” ASME J. Heat Transfer, 127(12), pp. 1344–1362. [CrossRef]
Chen, C. C., Nasrallah, M. M., and Anderson, H. U., 1993, “Synthesis and Characterization of (CeO2)0.8(SmO1.5)0.2 Thin Films From Polymeric Precursors,” J. Electrochem. Soc., 140(12), pp. 3555–3560. [CrossRef]
Ma, Y., Wang, X., Raza, R., Muhammed, M., and Zhu, B., 2010, “Thermal Stability of SDC/Na2CO3 Nanocomposite Electrolyte for Low-Temperature SOFCs,” Int. J. Hydrogen Energy, 35(7), pp. 2580–2585. [CrossRef]
Suzuki, T., Hasan, Z., Funahashi, Y., Yamaguchi, T., Fujishiro, Y., and Awano, M., 2009, “Impact of Anode Microstructure on Solid Oxide Fuel Cells,” Science, 325(5942), pp. 852–855. [CrossRef] [PubMed]
Van Roosmalen, J. A. M., and Cordfunke, E. H. P., 1992, “Chemical Reactivity and Interdiffusion of (La/Sr)MnO3 and (Zr,Y)O2 Solid Oxide Fuel Cell Cathode and Electrolyte Materials,” Solid State Ionics, 52(4), pp. 303–312. [CrossRef]
Zhou, Z., Han, D., Wu, H., and Wang, S., 2014, “Fabrication of Planar-Type SOFC Single Cells by a Novel Vacuum Dip-Coating Method and Co-Riring/Infiltration Techniques,” Int. J. Hydrogen Energy, 39(5), pp. 2274–2278. [CrossRef]
Tanner, C. W., and Virkar, A. V., 2003, “A Simple Model for Interconnect Design of Planar Solid Oxide Fuel Cells,” J. Power Sources, 113(1), pp. 44–56. [CrossRef]
Li, P.-W., Chen, S. P., and Chyu, M. K., 2006, “To Achieve the Best Performance Through Optimization of Gas Delivery and Current Collection in Solid Oxide Fuel Cells,” ASME J. Fuel Cell Sci. Technol., 3(2), pp. 188–194. [CrossRef]
Magar, Y. N., and Manglik, R. M., “Influence of Corrugated-Wall and Interrupted-Wall Interconnect Channel Geometries on Heat and Mass Transfer Characteristics of Anode-Supported Planar SOFC,” J. Enhanced Heat Transfer (in press).
Manglik, R. M., 2003, “Heat Transfer Enhancement,” Heat Transfer Handbook, A.Bejan and A. D.Kraus, eds., Wiley, Hoboken, NJ, Chap. 14.
Shah, R. K., and London, A. L., 1978, “Laminar Flow Forced Convection in Ducts,” Advances in Heat Transfer, Supplement 1, T. F.Irvine, Jr. and J. P.Hartnett, eds., Academic Press, New York.
Manglik, R. M., and Bergles, A. E., 1998, “Numerical Modeling and Analysis of Laminar Flow Heat Transfer in Non-Circular Compact Channels,” Computer Simulations in Compact Heat Exchangers, B.Sundén and M.Faghri, eds., Computational Mechanics, Southampton, UK, Chap. 2.
Sadasivam, R., Manglik, R. M., and Jog, M. A., 1999, “Fully Developed Forced Convection Through Trapezoidal and Hexagonal Ducts,” Int. J. Heat Mass Transfer, 42(23), pp. 4321–4331. [CrossRef]
Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R., and Khaleel, M. A., 2003, “Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks,” J. Power Sources, 113(1), pp. 109–114. [CrossRef]
Cheng, C. H., Chang, Y. W., and Hong, C. W., 2005, “Multiscale Parametric Studies on the Transport Phenomena of a Solid Oxide Fuel Cell,” ASME J. Fuel Cell Sci. Technol., 2(4), pp. 219–225. [CrossRef]
Pramuanjaroenkij, A., Kakaç, S., and Zhou, X. Y., 2008, “Mathematical Analysis of Planar Solid Oxide Fuel Cells,” Int. J. Hydrogen Energy, 33(10), pp. 2547–2565. [CrossRef]
Akhtar, N., Decent, S. P., Loghin, D., and Kendall, K., 2009, “A Three-Dimensional Numerical Model of a Single-Chamber Solid Oxide Fuel Cell,” Int. J. Hydrogen Energy, 34(20), pp. 8645–8663. [CrossRef]
Sohn, S., Nam, J. H., Jeon, D. H., and Kim, C.-J., 2010, “A Micro/Macroscale Model for Intermediate Temperature Solid Oxide Fuel Cells With Prescribed Fully-Developed Axial Velocity Profiles in Gas Channels,” Int. J. Hydrogen Energy, 35(21), pp. 11890–11907. [CrossRef]
Kulikovsky, A. A., 2010, “A Simple Equation for Temperature Gradient in a Planar SOFC Stack,” Int. J. Hydrogen Energy, 35(1), pp. 308–312. [CrossRef]
Yuan, J., Rokni, M., and Sundén, B., 2001, “Simulation of Fully Developed Laminar Heat and Mass Transfer in Fuel Cell Ducts With Different Cross-Sections,” Int. J. Heat Mass Transfer, 44(21), pp. 4047–4058. [CrossRef]
Yuan, J., Rokni, M., and Sundén, B., 2003, “Three Dimensional Computational Analysis of Gas and Heat Transport Phenomena in Ducts Relevant for Anode-Supported Solid Oxide Fuel Cells,” Int. J. Heat Mass Transfer, 46(5), pp. 809–821. [CrossRef]
Magar, Y. N., and Manglik, R. M., 2006, “Convective Cooling and Thermal Management Optimization of Planar Anode-Supported Solid Oxide Fuel Cells,” Thermal-Fluids & Thermal Processing Laboratory, University of CIncinnati, Cincinnati, OH, Report No. TFTPL-14.
Lide, D. R., and Frederikse, H. P. R., 1995, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL.
Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
Majumdar, P., 2005, Computational Methods for Heat and Mass Transfer, Taylor & Francis, New York.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
Chase, M. W., Jr., Davies, C. A., Downey, J. R., Jr., Frurip, D. J., McDonald, R. A., and Syverud, A. N., 1985, “JANAF Thermochemical Tables,” Journal of Physical and Chemical Reference Data, 3rd ed., Vol. 14, Supplement 1.
Simwonis, D., Thülen, H., Dias, F. J., Naoumidis, A., and Stöver, D., 1999, “Properties of Ni/YSZ Porous Cermets for SOFC Anode Substrates Prepared by Tape Casting and Coat-Mix Process,” J. Mater. Process. Technol., 92–93, pp. 107–111. [CrossRef]
Manglik, R. M., and Bergles, A. E., 1994, “Fully Developed Laminar Heat Transfer in Circular-Segment Ducts With Uniform Wall Temperature,” Numer. Heat Transfer, A26(5), pp. 499–519. [CrossRef]
Alkam, M. K., Al-Nimr, M. A., and Hamdan, M. O., 2001, “Enhancing Heat Transfer in Parallel-Plate Channels by Using Porous Inserts,” Int. J. Heat Mass Transfer, 44(5), pp. 931–938. [CrossRef]
Muley, A., and Manglik, R. M., 2000, “Enhanced Thermal–Hydraulic Performance Optimization of Chevron Plate Heat Exchangers,” Int. J. Heat Exchangers, 1(1), pp. 3–18.
Yerra, K. K., Manglik, R. M., and Jog, M. A., 2007, “Optimization of Heat Transfer Enhancement in Single-Phase Tubeside Flows With Twisted-Tape Inserts,” Int. J. Heat Exchangers, 8(1), pp. 117–138.

Figures

Grahic Jump Location
Fig. 1

Schematic representation of a typical planar solid oxide fuel cell: (a) single cell stack or module and (b) stack dimensional configuration and volatile species/oxidant transport

Grahic Jump Location
Fig. 3

Heat transfer or Nu characteristics of fuel and oxidant flows in anode- and cathode-side interconnect channels of different cross-sectional shapes

Grahic Jump Location
Fig. 4

Friction factor or (f Re) characteristics of fuel and oxidant flows in anode- and cathode-side interconnect channels of different cross-sectional shapes

Grahic Jump Location
Fig. 2

Physical and computational domains of planar SOFC stack modules with interconnect channels of different cross-sectional shape but fixed aspect ratio: (a) rectangular, (b) trapezoidal, and (c) triangular channel

Grahic Jump Location
Fig. 5

Variations with anode-layer thickness in heat transfer coefficient (Nu) and friction factor (f Re) in fuel and oxidant flows in anode-side interconnect channels of a rectangular cross section in a planar SOFC stack

Grahic Jump Location
Fig. 6

Temperature distribution in planar SOFC stacks (λa = 1.33, λc = 0.066) with interconnect channels of different cross-sectional shapes (γ = 2.0): (a) triangular (θ = 45 deg), (b) trapezoidal (θ = 60 deg), (c) trapezoidal (θ = 75 deg), and (d) rectangular (θ = 90 deg)

Grahic Jump Location
Fig. 7

Distribution of fuel or H2 mass fraction concentration in anode (λa = 1.33) layer and interconnect channels of different cross-sectional shapes (γ = 2.0): (a) triangular (θ = 45 deg), (b) trapezoidal (θ = 75 deg), and (c) rectangular (θ = 90 deg)

Grahic Jump Location
Fig. 8

Distribution of H2O mass fraction concentration in anode (λa = 1.33) layer and interconnect channels of different cross-sectional shapes (γ = 2.0): (a) triangular (θ = 45 deg), (b) trapezoidal (θ = 75 deg), and (c) rectangular (θ = 90 deg)

Grahic Jump Location
Fig. 9

Effects of interconnect channel cross-sectional shape and anode-layer thickness on the optimization of thermal–hydrodynamic characteristics of fuel and oxidant flows in anode-supported planar SOFC stack

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In