Glassman, I., and Yetter, R. A., 2008, Combustion, 4th ed., Academic, Press, New York.
Frenklach, M., Wang, H., and Rabinowitz, J. M., 1992, “Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method Combustion of Methane,” Prog. Energy Combust. Sci., 18, pp. 47–73.
[CrossRef]Hunter, T. B., Wang, H., Litzinger, T. A., and Frenklach, M., 1994, “The Oxidation of Methane at Elevated Pressures: Experiments and Modeling,” Combust. Flame, 97, pp. 201–224.
[CrossRef]Li, S. C., and Williams, F. A., 1999, “NOx Formation in Two-Stage Methane-Air Flames,” Combust. Flame, 118(3), pp. 399–414.
[CrossRef]Loffler, G., Sieber, R., Harasek, M., Hofbauer, H., Hauss, R., and Landauf, J., 2006, “NOx Formation in Natural Gas Combustion—A New Simplified Reaction Scheme for CFD Calculations,” Fuel, 85, pp. 513–523.
[CrossRef]Guo, H., Liu, F., and Smallwood, G. J., 2005, “A Numerical Study on NOx Formation in Laminar Counterflow CH
4/Air Triple Flames,” Combust. Flame, 143, pp. 282–298.
[CrossRef]Saqr, K. M., Aly, H. S., Sies, M. M., and Wahid, M. A., 2010, “Effect of Free Stream Turbulence on NOx and Soot Formation in Turbulent Diffusion CH
4-Air Flames,” Int. Commun. Heat Mass Transfer, 37, pp. 611–617.
[CrossRef]Liu, W., Xu, Y., Tian, Z., and Xu, Z., 2003, “A Thermodynamic Analysis on the Catalytic Combustion of Methane,” J. Nat. Gas Chem., 12, pp. 237–242.
Hinton, N., and Stone, R., 2014, “Laminar Burning Velocity Measurements of Methane and Carbon Dioxide Mixtures (Biogas) Over Wide Ranging Temperatures and Pressures,” Fuel, 116, pp. 743–750.
[CrossRef]Jahangirian, S., Engeda, A., and Wichman, I. S., 2009, “Thermal and Chemical Structure of Biogas Counterflow Diffusion Flames,” Energy Fuels, 23, pp. 5312–5321.
[CrossRef]Moliere, M., 2002, “Benefiting From the Wide Fuel Capability of Gas Turbines: A Review of Application Opportunities,” Proceedings ASME Turbo Expo 2002: Power for Land, Sea, and Air, Vol. 1, pp. 227–238.
Frassoldati, A., Faravelli, T., and Ranzi, E., 2007, “The Ignition, Combustion, and Flame Structure of Carbon Monoxide/Hydrogen Mixtures. Note 1: Detailed Kinetic Modeling of Syngas Combustion Also in Presence of Nitrogen Compounds,” Int. J. Hydrogen Energy, 32, pp. 3471–3485.
[CrossRef]Cuoci, A., Frassoldati, A., Buzzi-Ferraris, G., Faravelli, T., and Ranzi, E., 2007, “The Ignition, Combustion, and Flame Structure of Carbon Monoxide/Hydrogen Mixtures. Note 2: Fluid Dynamics and Kinetic Aspects of Syngas Combustion,” Int. J. Hydrogen Energy, 32, pp. 3486–3500.
[CrossRef]Walton, S. M., He, X., Zigler, B. T., and Wooldridge, M. S., 2007, “An Experimental Investigation of the Ignition Properties of Hydrogen and Carbon Monoxide Mixtures for Syngas Turbine Applications,” Proc. Combust. Inst., 31, pp. 3147–3154.
[CrossRef]EIA, 2011, U.S. Energy Information Administration, Annual Energy Outlook 2011, Doe/eia-0383(2011), EIA Office of Integrated and International Energy Analysis, U.S. Department of Energy, Washington, DC.
www.eia.gov/forecasts/aeo/EPA, 2007, “U.S. Greenhouse Gas Inventory Archive,” US Environmental Protection Agency, Technical Report No. EPA 430-R-07-002.
Crookes, R. J., 2006, “Comparative Bio-Fuel Performance in Internal Combustion Engines,” Biomass Bioenergy, 30, pp. 461–468.
[CrossRef]Newman, L. L., and McGee, J. P., 1956, “Oxygen Gasification of Coal: Some Unsolved Processing Problems,” Ind. Eng. Chem., 48(7), pp. 2223–2227.
[CrossRef]Basu, P., and Mettanant, V., 2009, “Biomass Gasification in Supercritical Water a Review,” Int. J. Chem. React. Eng., 7, pp. 1–61.
Reed, T. B., Levie, B., Markson, M. L., and Graboski, M. S., 1983, “A Mathematical Model for Stratified Downdraft Gasifiers,” Symposium on Mathematical Modeling of Biomass Pyrolysis Phenomena, Fuel Chemical Division, American Chemical Society, Vol. 28(5), pp. 410–420.
Roy, P. C., Datta, A., and Chakraborty, N., 2009, “Modelling of a Downdraft Biomass Gasifier With Finite Rate Kinetics in the Reduction Zone,” Int. J. Energy Res., 33, pp. 833–851.
[CrossRef]Emmerson, V. M., and Diaz, G., 2010, “Experimental Characterization of a Small-Scale Downdraft Gasifier for Biomass Waste,” Proceedings ASME IMECE 2010, IMECE2010-37392, American Society of Mechanical Engineers, pp. 1–5.
Ramos, J. I., 1986, “Comparison Between Thermodynamic and One-Dimensional Combustion Models of Spark-Ignition Engines,” Appl. Math. Modell., 10, pp. 409–422.
[CrossRef]Wilcox, D., 1998, Turbulence Modeling for CFD, DCW Industries Inc., La Canada, CA.
Warschauer, K. A., and Leene, J. A., 1971, “Experiments on Mean and Fluctuating Pressures of Circular Cylinders at Cross Flow at Very High Reynolds Numbers,” Proceedings International Conference on Wind Effects on Buildings and Structures, pp. 305–315.
Zdravkovich, M. M., 1997, Flow Around Circular Cylinders. Fundamentals, Vol. 1, Oxford University, Oxford, UK, Chap. VI.
Catalano, P., Wang, M., Iaccarino, G., and Moin, P., 2003, “Numerical Simulation of the Flow Around a Circular Cylinder at High Reynolds Numbers,” Int. J. Heat Fluid Flow, 24, pp. 463–469.
[CrossRef]Churchill, S. W., and BernsteinM. A., 1977, “A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow,” J. Heat Transfer, 99(2), pp. 300–306.
[CrossRef]Zeldovich, Y. B., 1946, “Oxidation of Nitrogen in Combustion and Explosions,” Acta Physicochim. URSS, 21, pp. 577–625.
Kee, R. J., Coltrin, M. E., and Glarborg, P., 2003, Chemically Reacting Flow, Wiley-Interscience, Hoboken, NJ.