0
Research Papers

Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage

[+] Author and Article Information
Joseph Stekli

U.S. Department of Energy,
1000 Independence Avenue SW,
Washington, DC 20585

Levi Irwin

ManTech International Corporation,
3865 Wilson Boulevard, Suite 800,
Arlington, VA 22203

Ranga Pitchumani

Fellow ASME
U.S. Department of Energy,
1000 Independence Avenue SW,
Washington, DC 20585

Manuscript received November 21, 2012; final manuscript received February 6, 2013; published online May 17, 2013. Assoc. Editor: Srinath V. Ekkad.

J. Thermal Sci. Eng. Appl 5(2), 021011 (May 17, 2013) (12 pages) Paper No: TSEA-12-1208; doi: 10.1115/1.4024143 History: Received November 21, 2012; Revised February 06, 2013

Concentrating solar power (CSP) provides the ability to incorporate simple, efficient, and cost-effective thermal energy storage (TES) by virtue of converting sunlight to heat as an intermediate step to generating electricity. Thermal energy storage for use in CSP systems can be one of sensible heat storage, latent heat storage using phase change materials (PCMs) or thermochemical storage. Commercially deployed CSP TES systems have been achieved in recent years, with two-tank TES using molten salt as a storage medium and steam accumulators being the system configurations deployed to date. Sensible energy thermocline systems and PCM systems have been deployed on a pilot-scale level and considerable research effort continues to be funded, by the United States Department of Energy (DOE) and others, in developing TES systems utilizing any one of the three categories of TES. This paper discusses technoeconomic challenges associated with the various TES technologies and opportunities for advancing the scientific knowledge relating to the critical questions still remaining for each technology.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mills, A., and Wiser, R., 2012, “Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California,” Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA, Report No. LBNL-5445E.
Izquierdo, S., Montanes, C., Dopazo, C., and Fueyo, N., 2010, “Analysis of CSP Plants for the Definition of Energy Policies: The Influence on Electricity Cost of Solar Multiples, Capacity Factors and Energy Storage,” Energy Policy, 38(10), pp. 6215–6221. [CrossRef]
Denholm, P., and Hand, M., 2011, “Grid Flexibility and Storage Required to Achieve Very High Penetration of Variable Renewable Electricity,” Energy Policy, 39(3), pp. 1817–1830. [CrossRef]
Denholm, P., and Hummon, M., 2012, “Simulating the Value of Concentrating Solar Power With Thermal Energy Storage in a Commercial Production Cost Model,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-6A20-56731.
Dominguez, R., Baringo, L., and Conejo, A. J., 2012, “Optimal Offering Strategy for a Concentrating Solar Power Plant,” Appl. Energy, 98, pp. 316–325. [CrossRef]
Madaeni, H., Sioshansi, R., and Denholm, P., 2012, “The Capacity Value of Solar Generation in the Western United States,” Proc. IEEE, 100, pp. 335–347. [CrossRef]
Amato, A., Compare, M., Gallisto, M., Maccari, A., Paganelli, M., and Zio, E., 2011, “Business Interruption and Loss of Assets Risk Assessment in Support of the Design of an Innovative Concentrating Solar Power Plant,” Renewable Energy, 36(5), pp. 1558–1567. [CrossRef]
Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., and Cabeza, L. F., 2010, “State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization,” Renewable Sustainable Energy Rev., 14(1), pp. 31–55. [CrossRef]
Medrano, M., Gil, A., Martorell, I., Potau, X., and Cabeza, L. F., 2010, “State of the Art on High-Temperature Thermal Energy Storage for Power Generation. Part 2—Case Studies,” Renewable Sustainable Energy Rev., 14(1), pp. 56–72. [CrossRef]
Li, P., Van Lew, J., Chan, C., Karaki, W., Stephens, J., and O'Brien, J. E., 2012, “Similarity and Generalized Analysis of Efficiencies of Thermal Energy Storage Systems,” Renewable Energy, 39(1), pp. 388–402. [CrossRef]
Barlev, D., Vidu, R., and Stroeve, P., 2011, “Innovation in Concentrated Solar Power,” Sol. Energy Mater. Sol. Cells, 95(10), pp. 2703–2725. [CrossRef]
Kenisarin, M. M., 2010, “High-Temperature Phase Change Materials for Thermal Energy Storage,” Renewable Sustainable Energy Rev., 14(3), pp. 955–970. [CrossRef]
Jegadheeswaran, S., Pohekar, S. D., and Kousksou, T., 2010, “Exergy Based Performance Evaluation of Latent Heat Thermal Storage System: A Review,” Renewable Sustainable Energy Rev., 14(9), pp. 2580–2595. [CrossRef]
Liu, M., Saman, W., and Bruno, F., 2012, “Review on Storage Materials and Thermal Performance Enhancement Techniques for High Temperature Phase Change Thermal Storage Systems,” Renewable Sustainable Energy Rev., 16(4), pp. 2118–2132. [CrossRef]
Li, Y.-Q., He, Y.-L., Wang, Z.-F., Xu, C., and Wang, W., 2012, “Exergy Analysis of Two Phase Change Materials Storage System for Solar Thermal Power With Finite-Time Thermodynamics,” Renewable Energy, 39(1), pp. 447–454. [CrossRef]
Singh, H., Saini, R. P., and Saini, J. S., 2010, “A Review on Packed Bed Solar Energy Storage Systems,” Renewable Sustainable Energy Rev., 14(3), pp. 1059–1069. [CrossRef]
Haller, M. Y., Cruickshank, C. A., Streicher, W., Harrison, S. J., Andersen, E., and Furbo, S., 2009, “Methods to Determine Stratification Efficiency of Thermal Energy Storage Processes—Review and Theoretical Comparison,” Sol. Energy, 83(10), pp. 1847–1860. [CrossRef]
Avila-Marin, A. L., 2011, “Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review,” Sol. Energy, 85(5), pp. 891–910. [CrossRef]
Guillot, S., Faik, A., Rakhmatullin, A., Lambert, J., Veron, E., Echegut, P., Bessada, C., Calvet, N., and Py, X., 2012, “Corrosion Effects Between Molten Salts and Thermal Storage Material for Concentrated Solar Power Plants,” Appl. Energy, 94, pp. 174–181. [CrossRef]
Herrmann, U., Kelly, B., and Price, H., 2004, “Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants,” Energy, 29, pp. 883–893. [CrossRef]
Laing, D., Steinmann, W.-D., Tamme, R., and Richter, C., 2006, “Solid Media Thermal Storage for Parabolic Trough Power Plants,” Sol. Energy, 80(10), pp. 1283–1289. [CrossRef]
Wang, T., Mantha, D., and Reddy, R. G., 2012, “Thermal Stability of the Eutectic Composition in LiNO3–NaNO3–KNO3 Ternary System Used for Thermal Energy Storage,” Sol. Energy Mater. Sol. Cells, 100, pp. 162–168. [CrossRef]
Wu, Y.-T., Ren, N., Wang, T., and Ma, C.-F., 2011, “Experimental Study on Optimized Composition of Mixed Carbonate Salt for Sensible Heat Storage in Solar Thermal Power Plant,” Sol. Energy, 85(9), pp. 1957–1966. [CrossRef]
Mawire, A., and Taole, S. H., 2011, “A Comparison of Experimental Thermal Stratification Parameters for an Oil/Pebble-Bed Thermal Energy Storage (TES) System During Charging,” Appl. Energy, 88(12), pp. 4766–4778. [CrossRef]
Mawire, A., and McPherson, M., 2009, “Experimental and Simulated Temperature Distribution of an Oil-Pebble Bed Thermal Energy Storage System With a Variable Heat Source,” Appl. Therm. Eng., 29(5–6), pp. 1086–1095. [CrossRef]
Singh, R., Saini, R. P., and Saini, J. S., 2006, “Nusselt Number and Friction Factor Correlations for Packed Bed Solar Energy Storage System Having Large Sized Elements of Different Shapes,” Sol. Energy, 80(7), pp. 760–771. [CrossRef]
Hanchen, M., Bruckner, S., and Steinfeld, A., 2011, “High-Temperature Thermal Storage Using a Packed Bed of Rocks—Heat Transfer Analysis and Experimental Validation,” Appl. Therm. Eng., 31(10), pp. 1798–1806. [CrossRef]
Dincer, I., and Dost, S., 1996, “A Perspective on Thermal Energy Storage Systems for Solar Energy Applications,” Int. J. Energy Res., 20(6), pp. 547–557. [CrossRef]
Li, P., Van Lew, J., Karaki, W., Chan, C., Stephens, J., and Wang,Q., 2011, “Generalized Charts of Energy Storage Effectiveness for Thermocline Heat Storage Tank Design and Calibration,” Sol. Energy, 85, pp. 2130–2143. [CrossRef]
Flueckiger, S. M., and Garimella, S. V., 2012, “Second-Law Analysis of Molten-Salt Thermal Energy Storage in Thermoclines,” Sol. Energy, 86(5), pp. 1621–1631. [CrossRef]
Haller, M. Y., Yazdanshenas, E., Anderson, E., Bales, C., Streicher, W., and Furbo, S., 2010, “A Method to Determine Stratification Efficiency of Thermal Energy Storage Processes Independently From Storage Heat Losses,” Sol. Energy, 84(6), pp. 997–1007. [CrossRef]
Yang, Z., and Garimella, S. V., 2010, “Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline,” Sol. Energy, 84, pp. 974–985. [CrossRef]
Yang, Z., and Garimella, S. V., 2010, “Molten-Salt Thermal Energy Storage in Thermoclines Under Different Environmental Boundary Conditions,” Appl. Energy, 87, pp. 3322–3329. [CrossRef]
Flueckiger, S., Yang, Z., and Garimella, S. V., 2011, “An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage,” Appl. Energy, 88, pp. 2098–2105. [CrossRef]
Xu, C., Wang, Z., He, Y., Li, X., and Bai, F., 2012, “Sensitivity Analysis of the Numerical Study on the Thermal Performance of a Packed-Bed Molten Salt Thermocline Thermal Storage System,” Appl. Energy, 92, pp. 65–75. [CrossRef]
Fernandes, D., Pitie, F., Caceres, G., and Baeyens, J., 2012, “Thermal Energy Storage: How Previous Findings Determine Current Research Priorities,” Energy, 39(1), pp. 246–257. [CrossRef]
Robak, C. W., Bergman, T. L., and Faghri, A., 2011, “Economic Evaluation of Latent Heat Thermal Energy Storage Using Embedded Thermosyphons or Heat Pipes for Concentrating Solar Power Applications,” Sol. Energy, 85, pp. 2461–2473. [CrossRef]
Vyshak, N. R., and Jilani, G., 2007, “Numerical Analysis of Latent Heat Thermal Energy Storage System,” Energy Convers. Manage., 48, pp. 2161–2168. [CrossRef]
Zivkovic, B., and Fujii, I., 2001, “An Analysis of Isothermal Phase Change of Phase Change Material Within Rectangular and Cylindrical Containers,” Sol. Energy, 70(1), pp. 51–61. [CrossRef]
Inaba, H., Matsuo, K., and Horibe, A., 2003, “Numerical Simulation for Fin Effect of a Rectangular Latent Heat Storage Vessel Packed With Molten Salt Under Heat Release Process,” Heat Mass Transfer, 39(3), pp. 231–237. [CrossRef]
Tao, Y. B., He, Y. L., and Qu, Z. G., 2012, “Numerical Study on Performance of Molten Salt Phase Change Thermal Energy Storage System With Enhanced Tubes,” Sol. Energy, 86(5), pp. 1155–1163. [CrossRef]
Nithyanandam, K., and Pitchumani, R., 2011, “Analysis and Optimization of a Latent Thermal Energy Storage System With Embedded Heat Pipes,” Int. J. Heat Mass Transfer, 54(21–22), pp. 4596–4610. [CrossRef]
Nithyanandam, K., and Pitchumani, R., 2013, “Computational Studies on a Latent Thermal Energy Storage System With Integral Heat Pipes for Concentrating Solar Power,” Appl. Energy, 103, pp. 400–415. [CrossRef]
Shabgard, H., Robak, C. W., Bergman, T. L., and Faghri, A., 2012, “Heat Transfer and Exergy Analysis of Cascaded Latent Heat Storage With Gravity-Assisted Heat Pipes for Concentrating Solar Power Applications,” Sol. Energy, 86, pp. 816–830. [CrossRef]
Ren, N., Wu, Y.-T., Wang, T., and Ma, C.-F., 2011, “Experimental Study on Optimized Composition of Mixed Carbonate for Phase Change Thermal Storage in Solar Thermal Power Plant,” J. Therm. Anal. Calorim., 104(3), pp. 1201–1208. [CrossRef]
Laing, D., Bahl, C., Bauer, T., Lehmann, D., and Steinmann, W.-D., 2011, “Thermal Energy Storage for Direct Steam Generation,” Sol. Energy, 85(4), pp. 627–633. [CrossRef]
Bayon, R., Rojas, E., Valenzuela, L., Zarza, E., and Leon, J., 2010, “Analysis of the Experimental Behavior of a 100 kWth Latent Heat Storage System for Direct Steam Generation in Solar Thermal Power Plants,” Appl. Therm. Eng., 30(17–18), pp. 2643–2651. [CrossRef]
Shabgard, H., Bergman, T. L., Sharifi, N., and Faghri, A., 2010, “High Temperature Latent Heat Thermal Energy Storage Using Heat Pipes,” Int. J. Heat Mass Transfer, 53(21–22), pp. 2979–2988. [CrossRef]
Adinberg, R., Zvegilsky, D., and Epstein, M., 2010, “Heat Transfer Efficient Thermal Energy Storage for Steam Generation,” Energy Convers. Manage., 51(1), pp. 9–15. [CrossRef]
Michels, H., and Pitz-Paal, R., 2007, “Cascaded Latent Heat Storage for Parabolic Trough Solar Power Plants,” Sol. Energy, 81, pp. 829–837. [CrossRef]
Hoshi, A., Mills, D. R., Bittar, A., and Saitoh, T. S., 2005, “Screening of High Melting Point Phase Change Materials (PCM) in Solar Thermal Concentrating Technology Based on CLFR,” Sol. Energy, 79(3), pp. 332–339. [CrossRef]
Velraj, R., Seeniraj, R. V., Hafner, B., Faber, C., and Schwarzer, K., 1999, “Heat Transfer Enhancement in a Latent Heat Storage System,” Sol. Energy, 65(3), pp. 171–180. [CrossRef]
Abedin, A. H., and Rosen, M. A., 2011, “A Critical Review of Thermochemical Energy Storage Systems,” Open Renewable Energy J., 4, pp. 42–46. [CrossRef]
Dunn, R., Lovegrove, K., and Burgess, G., 2012, “A Review of Ammonia-Based Thermochemical Energy Storage for Concentrating Solar Power,” Proc. IEEE, 100(2), pp. 391–400. [CrossRef]
Heintz, A., 2012, “Solar Energy Combined With Chemical Reactive Systems for the Production and Storage of Sustainable Energy. A Review of Thermodynamic Principles,” J. Chem. Thermodyn., 46, pp. 99–108. [CrossRef]
Barnhart, J. S., 1984, “Thermochemical Seasonal Storage for Solar Thermal Power,” Pacific Northwest National Laboratory, Richland, WA, Report No. PNL-4970.
Smith, R. D., Poole, D. R., Li, C. H., Carlson, D. K., and Peterson, D. R., 1978, “Chemical Energy Storage for Solar Thermal Conversion,” Rocket Research Company, Report No. RRC-80-R-678.
Abedin, A. H., and Rosen, M. A., 2012, “Closed and Open Thermochemical Energy Storage: Energy and Exergy-Based Comparisons,” Energy, 41(1), pp. 83–92. [CrossRef]
Abu-Hamed, T., Karni, J., and Epstein, M., 2007, “The Use of Boron for Thermochemical Storage and Distribution of Solar Energy,” Sol. Energy, 81(1), pp. 93–101. [CrossRef]
Tescari, S., Mazet, N., and Neveu, P., 2010, “Constructal Method to Optimize Solar Thermochemical Reactor Design,” Sol. Energy, 84(9), pp. 1555–1566. [CrossRef]
Kreetz, H., and Lovegrove, K., 2003, “Exergy Analysis of an Ammonia Synthesis Reactor in a Solar Thermochemical Power System,” Sol. Energy, 73(3), pp. 187–194. [CrossRef]
Davis, J. R., ed., 2000, “Special-Purpose Nickel Alloys” ASM Specialty Handbook: Nickel, Cobalt and Their Alloys (#06178G), ASM International, Materials Park, OH, pp. 92–105.
Nickel Development Institute, American Iron and Steel Industry, High-Temperature Characteristics of Stainless Steels ( A Designers' Handbook Series), No. 9004, American Iron and Steel Institute, Washington, DC.
Sandia Technical Staff, 2011, “Thermal Ratcheting Analysis of Advanced Thermocline Energy Storage Tanks,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011-6427P.
Fan, L. W., and Khodadadi, J. M., 2011, “Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review,” Renewable Sustainable Energy Rev., 15(1), pp. 24–46. [CrossRef]
Tamme, R., Bauer, T., Buschle, J., Laing, D., Muller-Steinhagen, H., and Steinman, W.-D., 2008, “Latent Heat Storage Above 120 °C for Applications in the Industrial Process Heat Sector and Solar Power Generation,” Int. J. Energy Res., 32(3), pp. 264–271. [CrossRef]
Kodama, T., 2003, “High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels,” Prog. Energy Combust. Sci., 29(6), pp. 567–597. [CrossRef]
Mauran, S., Prades, P., and Lharidon, F., 1993, “Heat and Mass Transfer in Consolidated Reacting Beds for Thermochemical Systems,” Heat Recovery Syst. CHP, 13(4), pp. 315–319. [CrossRef]
Steinfeld, A., Sanders, S., and Palumbo, R., 1999, “Design Aspects of Solar Thermochemical Engineering,” Sol. Energy, 65(1), pp. 43–53. [CrossRef]
U.S. Department of Energy, Energy Efficiency and Renewable Energy, 2012, “SunShot Vision Study: February 2012,” U.S. DOE, Washington, DC, Report No. DOE/GO-102012-3037, pp. 97–124.
Electric Power Research Institute (EPRI), 2010, “Solar Thermocline Storage Systems: Preliminary Design Study,” Electric Power Research Institute, Palo Alto, CA, Report No. 1019581.
Pacheco, J., 2002, “Final Test and Evaluation Results From the Solar Two Project,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2002-0120.
Goods, S. H., and Bradshaw, R. W., 2004, “Corrosion of Stainless Steels and Carbon Steel by Molten Mixtures of Commercial Nitrate Salts,” J. Mater. Eng. Perform., 13(1), pp. 78–87. [CrossRef]
Kruizenga, A., 2011, “Stainless Steel Corrosion by Molten Nitrates: Analysis and Lessons Learned,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011-6579.
Bradshaw, R., 1987, “Oxidation and Chromium Depletion of Alloy 800 and 316SS by MoltenNaNO3-KNO3 at Temperatures Above 600 Degrees Centigrade,” Sandia National Laboratories, Livermore, CA, Report No. SAND86-9009.
Wick, C., Veilleux, R. F., and SME Staff, 1985, Tool and Manufacturing Engineers Handbook: Materials, Finishing and Coating, Vol. 3, Society of Manufacturing Engineers, Dearborn, MI, Chap. 10.
Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Beranger, G., and Lemaitre, C., 2000, “Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance,” Mater. Sci. Eng. A, 280(2), pp. 294–302. [CrossRef]
Lo, K. H., Shek, C. H., and Lai, J. K. L., 2009, “Recent Developments in Stainless Steels,” Mater. Sci. Eng. R, 65(4–6), pp. 39–104. [CrossRef]
Wang, T. S., Yu, J. K., and Dong, B. F., 2006, “Surface Nanocrystallization Induced by Shot Peening and Its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel,” Surf. Coat. Technol., 200(16–17), pp. 4777–4781. [CrossRef]
Sexton, C. L., Byrne, G., and Watkins, K. G., 2001, “Alloy Development by Laser Cladding: An Overview,” J. Laser Appl., 13(1), pp. 2–11. [CrossRef]
Yahiro, A., Masui, T., Yoshida, T., and Doi, D., 1991, “Development of Nonferrous Clad Plate and Sheet by Warm Rolling With Different Temperature of Materials,” ISIJ Int., 31(6), pp. 647–654. [CrossRef]
Kacar, R., and Acarer, M., 2003, “Microstructure-Property Relationship in Explosively Welded Duplex Stainless Steel-Steel,” Mater. Sci. Eng. A, 363(1), pp. 290–296. [CrossRef]
Gabbrielli, R., and Zamparelli, C., 2009, “Optimal Design of a Molten Salt Thermal Storage Tank for Parabolic Trough Solar Power Plants,” ASME J. Sol. Energy Eng., 131(4), p. 041001. [CrossRef]
Kilpert, R., Winsor, E. J., and Bauer, R. H., 1965, “Sprayed Internally Insulated Pipe,” U.S. Patent No. 3,425,455.
Motsenbocker, J. O., 1945, “Insulated Pipe,” U.S. Patent No. 2,419,278.
Chen, T.-H., and Cicchino, D., 1991, “Curved Pipe Section Having Refractory Lining and Central Section of Flexible Insulating Material,” U.S. Patent No. 5,031,665.
Jones, H. B., and Bunn, D. P., 1977, “High Temperature and Shock Resistant Insulated Pipe,” U.S. Patent No. 4,061,162.
Mordyuk, B. N., Prokopenk, G. I., Vasylyev, M. A., and Iefimov, M. O., 2007, “Effect of Structure Evolution Induced by Ultrasonic Peening on the Corrosion Behavior of AISI-321 Stainless Steel,” Mater. Sci. Eng. A, 458(1–2), pp. 253–261. [CrossRef]
Batista, A. C., Dias, A. M., Lebrun, J. L., Le Flour, J. C., and Inglebert, G., 2000, “Contact Fatigue of Automotive Gears: Evolution and Effects of Residual Stresses Introduced by Surface Treatments,” Fatigue Fract. Eng. Mater. Struct., 23(3), pp. 217–228. [CrossRef]
Starke, E. A., Sanders, T. H., and Cassada, W. A., eds., 2000, “Aluminum Alloys—Their Physical and Mechanical Properties, Parts 1–3,” Materials Science Forum, Vol. 331–333, pp. 1401–1412.
Sears, J. R., and James, B., 2011, “System and Method for Integrally Casting Multilayer Metallic Structures,” U.S. Patent Application 20110036530.
Santo, L., 2008, “Laser Cladding of Metals: A Review,” Int. J. Surf. Sci. Eng., 2(5), pp. 327–336. [CrossRef]
Anjos, M. A., Vilar, R., and Qiu, Y. Y., 1997, “Laser Cladding of ASTM S31254 Stainless Steel on a Plain Carbon Steel Substrate,” Surf. Coat. Technol., 92(1–2), pp. 142–149. [CrossRef]
Murugan, N., and Parmar, R. S., 1997, “Stainless Steel Cladding Deposited by Automatic Gas Metal Arc Welding,” Weld. J., 76(10), pp. 391-s–403-s. Available at http://www.americanweldingsociety.org/wj/supplement/WJ_1997_10_s391.pdf
Yang, Y., Xinming, Z., Zhenghua, L., and Qingyun, L., 1996, “Adiabatic Shear Band on the Titanium Side in the Ti/Mild Steel Explosive Cladding Interface,” Acta Mater., 44(2), pp. 561–565. [CrossRef]
Manikandan, P., Hokamoto, K., Fujita, M., Rahukandan, K., and Tomoshige, R., 2008, “Control of Energetic Conditions by Employing Interlayer of Different Thickness for Explosive Welding of Titanium/304 Stainless Steel,” J. Mater. Process. Technol., 195, pp. 232–240. [CrossRef]
Goswami, G. L., Kumar, S., Galun, R., and Mordike, B. L., 2003, “Laser Cladding of Ni-Mo Alloys for Hardfacing Applications,” Lasers Eng., 13(1), pp. 1–12. Available at http://www.oldcitypublishing.com/LIE/LIEcontents/LIEv13n1issuecontents.html
Min'ko, N. I., and Nartsev, V. M., 2007, “Effect of the Glass Composition on Corrosion of Zirconium-Containing Refractories in a Glass-Melting Furnace (A Review),” Glass Ceram., 64(9–10), pp. 335–342. [CrossRef]
Kasselouri, V., Kouloumbi, N., and Mendrinos, L., 2002, “Effect of Glass Melt on Corrosion of the Lining of an Industrial Glass Furnace,” Glass Technol.–Eur. J. Glass Sci. Technol. Part A, 43(2), pp. 75–79. Available at http://www.ingentaconnect.com/content/sgt/gt/2002/00000043/00000002/art00004
Saint-Gobain Ceramic Materials, “Gasification,” last accessed February 2013, http://www.refractories.saint-gobain.com/Gasification.aspx
Kwong, K., Petty, A., Bennett, J., Krabbe, R., and Thomas, H., 2007, “Wear Mechanisms of Chromia Refractories in Slagging Gasifiers,” Int. J. Appl. Ceram. Technol., 4(6), pp. 503–513. [CrossRef]
Ruth, L. A., 2003, “Advanced Clean Coal Technology in the USA,” Mater. High Temp., 20(1), pp. 7–14. [CrossRef]
Campforts, M., Verscheure, K., Boydens, E., Van Rompaey, T., Blanpain, B., and Wollants, P., 2007, “On the Microstructure of a Freeze Lining of an Industrial Nonferrous Slag,” Metall. Mater. Trans. B, 38(6), pp. 841–851. [CrossRef]
ASTM NACE/ASTMG31-12a, 2012, “Standard Guide for Laboratory Immersion Corrosion Testing of Metals,” Book of Standards Vol. 03.02, ASTM International, West Conshohocken, PA.
ASTM G1-03, 2011, “Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens,” Book of Standards Vol. 03.02, ASTM International, West Conshohocken, PA.
Pint, B. A., and Wright, I. G., 2004, “The Oxidation Behavior of Fe-Al Alloys,” Materials Science Forum: High Temperature Corrosion and Protection of Materials, Vol. 461–464, P. Steinmetz, I. G. Wright, G. Meier, A. Galerie, B. Pieraggi, and R. Podor, eds., Trans. Tech. Publications, Zurich, Switzerland, pp. 799–806. [CrossRef]
Chang, B.-Y., and Park, S.-M., 2010, “Electrochemical Impedance Spectroscopy,” Annu. Rev. Anal. Chem., 3, pp. 207–229. [CrossRef]
ASTM G102-89, 2010, “Standard Practice for Calculation of Corrosion Rates and Related Information From Electrochemical Measurements,” Book of Standards Vol. 03.02, ASTM International, West Conshohocken, PA.
ASTM G150-99, 2010, “Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels,” Book of Standards Vol. 03.02, ASTM International, West Conshohocken, PA.
ASTM G199-09, 2009, “Standard Guide for Electrochemical Noise Measurement,” Book of Standards Vol. 03.02, ASTM International, West Conshohocken, PA.
Hsieh, M.-K., Dzombak, D. A., and Vidic, R. D., 2010, “Bridging Gravimetric and Electrochemical Approaches to Determine Corrosion Rate of Metals and Metal Alloys in Cooling Systems—Bench-Scale Evaluation Method,” Ind. Chem. Eng. Res., 49(19), pp. 9117–9123. [CrossRef]
Oijerholm, J., Pan, J., Lu, Q., and Leygraf, C., 2007, “In-Situ Impedence Spectroscopy Study of Electrical Conductivity and Ionic Transport in Thermally Grown Oxide Scales on a Commercial FeCrAl Alloy,” Oxid. Met., 68(5–6), pp. 253–269. [CrossRef]
Pettit, F., 2011, “Hot Corrosion of Metals and Alloys,” Oxid. Met., 76(1–2), pp. 1–21. [CrossRef]
Badawy, W. A., and AlKharafi, F. M., 1996, “Stability of Titanium and Zirconium Anodic Films in Nitric Acid Solutions: EIS Comparative Investigation,” Bull. Electrochem., 12(9), pp. 505–510.
Gungor, A., Ozbayoglu, M., Kasnakoglu, C., Biyikoglu, A., and Uysal, B. Z., 2012, “A Parametric Study on Coal Gasification for the Production of Syngas,” Chem. Pap., 66(7), pp. 677–683. [CrossRef]
Mathur, A. K., 2010, Terrafore, Inc., U.S. Patent Application 20120118554
“New Innovations in Thermal Energy Storage for Thermosolar Plants,”2011, Solar Thermal Magazine, May 24, 2011, accessed February 2013, http://www.solarthermalmagazine.com/2011/05/24/new-innovations-in-thermal-energy-storage-for-thermosolar-plants
Slocum, A. H., 2010, “Solar Thermal Receiver With Divided Thermocline Storage,” MIT, U.S. Patent Application 61/356,882.
Laing, D., Steinmann, W. D., Viebahn, P., Gräter, F., and Bahl, C., 2010, “Economic Analysis and Life Cycle Assessment of Concrete Thermal Energy Storage for Parabolic Trough Power Plants,” ASME J. Sol. Energy Eng., 132(4), p. 041013. [CrossRef]
Laing, D., Lehmann, D., Fiß, M., and Bahl, C., 2009, “Test Results of Concrete Thermal Energy Storage for Parabolic Trough Power Plants,” ASME J. Sol. Energy Eng., 131(4), p. 041007. [CrossRef]
SENER, 2010, “High-Efficiency Thermal Storage System for Solar Plants,” United States Department of Energy Award No. # DE-EE0003592, accessed February 2013, http://www1.eere.energy.gov/solar/sunshot/csp_baseload_sener.html
Khan, M. I., 2002, “Factors Effecting the Thermal Properties of Concrete and Applicability of Its Prediction Models,” Build. Environment, 37, pp. 607–614. [CrossRef]
Xu, Y. S., and Chung, D. D. L., 2000, “Cement of High Specific Heat and High Thermal Conductivity, Obtained by Using Silane and Silica Fume as Admixtures,” Cem. Concr. Res., 30, pp. 1175–1178. [CrossRef]
Viswanathan, U. K., Kutty, T. R. G., Keswani, R., and Ganguly, C., 1996, “Evaluation of Hot Hardness and Creep of a 350 Grade Commercial Maraging Steel,” J. Mater. Sci., 31(10), pp. 2705–2709. [CrossRef]
Badisch, E., and Mitterer, C., 2003, “Abrasive Wear of High Speed Steels: Influence of Abrasive Particles and Primary Carbides on Wear Resistance,” Tribol. Int., 36(10), pp. 765–770. [CrossRef]
Winkelmann, H., Varga, M., Badisch, E., and Danninger, H., 2009, “Wear Mechanisms at High Temperatures—Part 2: Temperature Effect on Wear Mechanisms in the Erosion Test,” Tribol. Lett., 34(3), pp. 167–175. [CrossRef]
Feldhoff, J. F., Schmitz, K., Eck, M., Schnatbaum-Laumann, L., Laing, D., Ortiz-Vives, F., and Schulte-Fischedick, J., 2012, “Comparative System Analysis of Direct Steam Generation and Synthetic Oil Parabolic Trough Power Plants With Integrated Thermal Storage,” Sol. Energy, 86(1), pp. 520–530. [CrossRef]
Wang, S., Faghri, A., and Bergman, T. L., 2010, “A Comprehensive Numerical Model for Melting With Natural Convection,” Int. J. Heat Mass Transfer, 53, pp. 1986–2000. [CrossRef]
Abengoa Solar, 2008, “Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants,” United States Department of Energy Award No. # DE-FC36-08GO18156, accessed February 2013, http://www1.eere.energy.gov/solar/sunshot/csp_storage_abengoa.html
Wang, J.-P., Zhang, X.-X., and Wang, X.-C., 2011, “Preparation, Characterization, and Permeation Kinetics Description of Calcium Alginate Macro-Capsules Containing Shape-Stabilize Phase Change Materials,” Renewable Energy, 36(11), pp. 2984–2991. [CrossRef]
Le Chatelier, H. L., 1884, “Sur un Énoncé Général des Lois des Équilibres Chimiques,” Comptes Rendus de l'Académie des Sciences, 99, pp. 786–789.
Abedim, A. H., and Rosen, M. A., 2011, “A Critical Review of Thermochemical Energy Storage Systems,” Open Renewable Energy J., 4, pp. 42–46. [CrossRef]
Davis, M. E., and Davis, R. J., 2012, Fundamentals of Chemical Reaction Engineering, Dover Publications, Boston, MA, pp. 184–239.
Orhan, M. F., Dincer, I., and Rosen, M. A., 2009, “Energy and Exergy Analyses of the Fluidized Bed of a Copper-Chlorine Cycle for Nuclear-Based Hydrogen Production via Thermochemical Water Decomposition,” Chem. Eng. Res. Des., 87, pp. 684–694. [CrossRef]
Lovegrove, K., Luzzi, A., McCann, M., and Freitag, O., 1999, “Exergy Analysis of Ammonia Based Solar Thermochemical Power Systems,” Sol. Energy, 66, pp. 103–115. [CrossRef]
Ozturk, I. T., Hammache, A., and Bilgen, E., 1995, “An Improved Process for H2SO4 Decomposition Step of the Sulfur-Iodine Cycle,” Energy Convers. Manage., 36(1), pp. 11–21. [CrossRef]
Lovegrove, K., 1993, “Thermodynamic Limits on the Performance of a Solar Thermochemical Energy Storage,” Int. J. Energy Res., 17, pp. 817–829. [CrossRef]
Lovegrove, K., 1993, “Exergetic Optimization of a Solar Thermochemical Energy Storage System Subject to Real Constraints,” Int. J. Energy Res., 17, pp. 831–845. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Illustration of a CSP plant layout consisting of a solar field, TES, and power block subcomponents

Grahic Jump Location
Fig. 2

Schematic of (a) a direct TES system, which uses the same HTF in the solar energy receiver and in the TES system and (b) an indirect TES system, which uses different HTFs in the solar energy receiver and in the TES system, requiring an additional heat exchanger

Grahic Jump Location
Fig. 3

Representations of (a) diffuse and (b) sharp temperature gradients in a thermocline. Diffuse temperature gradients occur over a large spatial area while sharp temperature gradients occur over a relatively smaller spatial area.

Grahic Jump Location
Fig. 4

Distribution of the number of reported studies in the literature on the various approaches to encapsulation of phase change materials

Grahic Jump Location
Fig. 5

A thermochemical energy storage system relies upon the addition or removal of heat to alter the chemical potential energy stored in a chemical equilibrium (A + B ⇌ C + D). “Heat IN” is considered the charging step while “Heat OUT” is considered the discharging step.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In