0
Research Papers

Applications of Heat Transfer Fundamentals to Fire Modeling

[+] Author and Article Information
O. A. Ezekoye

Deptartment of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712

M. J. Hurley

Society of Fire Protection Engineers,
Bethesda, MD 20814

J. L. Torero

The University of Queensland,
Brisbane, QLD 4072, Australia

K. B. McGrattan

National Institute of Standards and Technology,
Gaithersburg, MD 20899

Manuscript received November 8, 2012; final manuscript received March 9, 2013; published online May 17, 2013. Assoc. Editor: Alexander L. Brown.

J. Thermal Sci. Eng. Appl 5(2), 021009 (May 17, 2013) (11 pages) Paper No: TSEA-12-1200; doi: 10.1115/1.4024015 History: Received November 08, 2012; Revised March 09, 2013

The fire industry relies on fire engineers and scientists to develop materials and technologies used to either resist, detect, or suppress fire. While combustion processes are the drivers for what might be considered to be fire phenomena, it is heat transfer physics that mediate how fire spreads. Much of the knowledge of fire phenomena has been encapsulated and exercised in fire modeling software tools. Over the past 30 years, participants in the fire industry have begun to use fire modeling tools to aid in decision making associated with design and analysis. In the rest of this paper we will discuss what the drivers have been for the growth of fire modeling tools; the types of submodels incorporated into such tools; the role of model verification, validation, and uncertainty propagation in these tools; and possible futures for these types of tools to best meet the requirements of the user community. Throughout this discussion, we identify how heat transfer research has supported and aided the advancement of fire modeling.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Karter, M., 2012, Fire Loss in the United States During 2011, National Fire Protection Association, Quincy, MA.
Hall, J., 2012, The Total Cost of Fire in the United States, National Fire Protection Association, Quincy, MA.
Routley, J. G., 1988, “Interstate Bank Building Fire, Los Angeles, California,” United States Fire Administration, Washington, DC, Technical Report No. UF-TR-022.
Routley, J. G., Jennings, C., and Chubb, M., 1991, “Highrise Office Building Fire, One Meridian Plaza, Philadelphia, Pennsylvania,” United States Fire Administration, Washington, DC, Technical Report No. USFA-TR-049.
Milke, J., 2003, “Study of Building Performance in the WTC Disaster,” Fire Protect. Eng., 18, pp. 6–16.
Custer, R., and Meacham, B., 1997, Introduction to Performance-Based Fire Safety, National Fire Protection Association, Quincy, MA.
NFPA 921, Guide for Fire and Explosion Investigations, National Fire Protection Association, Quincy, MA.
McGrattan, K., 2005, “Fire Modeling: Where Are We? Where Are We Going?,” Fire Safety Science-Proceedings of the 8th International Symposium (IAFSS 2005), pp. 53–68. [CrossRef]
Torero, J. L., 2013, “Scaling-Up Fire,” Proc. Combust. Inst., 34, pp. 99–124. [CrossRef]
Hirata, T., Kashiwagi, T., and Brown, J. E., 1985, “Thermal and Oxidative Degradation of Poly(Methyl Methacrylate): Weight Loss,” Macromolecules, 18, pp. 1410–1418. [CrossRef]
Di Blasi, C., 1993, “Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels,” Prog. Energ. Combust. Sci., 19, pp. 71–104. [CrossRef]
Conesa, J. A., Marcilla, A., Font, R., and Caballero, J. A., 1996, “Thermogravimetric Studies on the Thermal Decomposition of Polyethylene,” J. Anal. Appl. Pyrolysis, 36, pp. 1–15. [CrossRef]
Burnham, A. K., and Weese, R. K., 2004, “A Model-Fitting Approach to Characterizing Polymer Decomposition Kinetics,” LLNL United States, Department of Energy, Report No. UCRL-CONF-203168.
Bruns, M. C., Koo, J. H., and Ezekoye, O. A., 2009, “Population-Based Models of Thermoplastic Degradation: Using Optimization to Determine Model Parameters,” Polymer Degrad. Stab., 94, pp. 1013–1022. [CrossRef]
Kashiwagi, T., Du, F., Douglas, J. F., Winey, K. I., Harris, R. H., and Shields, J. R., 2005, “Nanoparticle Networks Reduce the Flammability of Polymer Nanocomposites,” Natur. Mater., 4(12), pp. 928–933. [CrossRef]
Höhne, G., Hemminger, W. F., and Flammersheim, H. J., 2003, Differential Scanning Calorimetry, Springer, New York.
Stoliarov, S. I., 2008, “Determination of the Heats of Gasification of Polymers Using Differential Scanning Calorimetry,” Polym Degrad. Stab., 93, pp. 422–427. [CrossRef]
Stoliarov, S. I., Westmoreland, P. R., Nyden, M. R., and Forney, G. P., 2003, “A Reactive Molecular Dynamics Model of Thermal Decomposition in Polymers: I. Poly(Methyl Methacrylate),” Polymer, 44(3), pp. 883–894. [CrossRef]
Nyden, M. R., Stoliarov, S. I., Westmoreland, P. R., Guo, Z. X., and Jee, C., 2004, “Applications of Reactive Molecular Dynamics to the Study of the Thermal Decomposition of Polymers and Nanoscale Structures,” Mater. Sci. Eng. A, 365, pp. 114–121. [CrossRef]
Smith, K. D., Bruns, M., Stoliarov, S. I., Nyden, M. R., Ezekoye, O. A., and Westmoreland, P. R., 2011, “Assessing the Effect of Molecular Weight on the Kinetics of Backbone Scission Reactions in Polyethylene Using Reactive Molecular Dynamics,” Polymer, 52(14), pp. 3104–3111. [CrossRef]
Car, R., and Parrinello, M., 1985, “Unified Approach for Molecular Dynamics and Density Functional Theory,” Phys. Rev. Lett., 55(22), pp. 2471–2474. [CrossRef] [PubMed]
Rein, G., Lautenberger, C., Fernandez-Pello, A. C., Torero, J. L., and Urban, D. L., 2006, “Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion,” Combust. Flame, 146, pp. 95–108. [CrossRef]
Lautenberger, C., Rein, G., and Fernandez-Pello, A. C., 2006, “The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling From Bench-Scale Fire Test Data,” Fire Safe J., 41, pp. 204–214. [CrossRef]
Carvel, R., Steinhaus, T., Rein, G., and Torero, J. L., 2011, “Determination of the Flammability Properties of Polymeric Materials: A Novel Method,” J. Polym. Degrad. Stab., 96, pp. 314–319. [CrossRef]
Rogaume, T., Valencia, L. B., Guillaume, E., Richard, F., Luche, J., Rein, G., and ToreroJ. L., 2011, “Development of the Thermal Decomposition Mechanism of Polyether Polyurethane Foam Using Both Condensed and Gas-Phase Release Data,” Combust. Sci. Tech., 183(7), pp. 627–644. [CrossRef]
Kaviany, M., 1991, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
Ohlemiller, T. J., Shields, J., Butler, K. M., Collins, B., and Seck, M., 2000, “Exploring the Role of Polymer Melt Viscosity in Melt Flow and Flammability Behavior,” Proceedings of the Fire Retardant Chemicals Association Annual Meeting.
Berry, G. C., and Fox, T. G., 1968, “The Viscosity of Polymers and Their Concentrated Solutions,” Adv. Polymer Sci., 5, pp. 261–357. [CrossRef]
Denn, M. M., 1990, “Issues in Viscoelastic Fluid Mechanics,” Ann. Rev. Fluid Mech., 22, pp. 13–32. [CrossRef]
Jaluria, Y., 2001, “Fluid Flow Phenomena in Materials Processing—The 2000 Freeman Scholar Lecture,” ASME J. Fluids Eng., 123(2), pp. 173–210. [CrossRef]
Kashiwagi, T., and Nambu, H., 1992, “Global Kinetics Constants for Thermal Oxidative Degradation of a Cellulosic Paper,” Combust. Flame, 88, pp. 345–368. [CrossRef]
Fernandez-Pello, A. C., 1995, “The Solid Phase,” Combustion Fundamentals of Fire, G.Cox, ed., Academic Press, New York, pp. 31–100.
Niioka, T., Takahashi, M., and Izumikawa, M., 1981, “Gas-Phase Ignition of a Solid Fuel in a Hot Stagnation Point Flow,” 18th Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 741–747.
Williams, F. A., 1985, Combustion Theory, 2nd ed., Addison-Wesley Publishing Company, Inc., Menlo Park, CA.
Quintiere, J. G., 2006, Fundamentals of Fire Phenomena, John Wiley and Sons, New York.
Babrauskas, V., 2003, Ignition Handbook, Fire Science Publishers & Society of Fire Protection Engineers, Issaquah, WA.
Atreya, A., 1998, “Ignition of Fires,” Phil. Trans. R. Soc. A, 356, pp. 2787–2813. [CrossRef]
Rasbash, D. J., Drysdale, D. D., and Deepak, D., 1986, “Critical Heat and Mass Transfer at Pilot Ignition and Extinction of a Material,” Fire Safe. J., 10, pp. 1–10. [CrossRef]
Thomson, H. E., Drysdale, D. D., and Beyler, C. L., 1988, “An Experimental Evaluation of Critical Surface Temperature as a Criterion for Piloted Ignition of Solid Fuels,” Fire Safe J., 13, pp. 185–196. [CrossRef]
Drysdale, D. D., 2011, Introduction to Fire Dynamics, 3rd ed., John Wiley and Sons, New York.
Pitts, W. M., 1995, “The Global Equivalence Ratio Concept and the Formation Mechanisms of Carbon Monoxide in Enclosure Fires,” Prog. Energ. Combust. Sci., 21(3), pp. 197–237. [CrossRef]
Frenklach, M., 2002, “Reaction Mechanism of Soot Formation in Flames,” Phys. Chem. Chem. Phys., 4(11), pp. 2028–2037. [CrossRef]
Öktem, B., Tolocka, M. P., Zhao, B., Wang, H., and Johnston, M. V., 2005, “Chemical Species Associated With the Early Stage of Soot Growth in a Laminar Premixed Ethylene–Oxygen–Argon Flame,” Combust. Flame, 142(4), pp. 364–373. [CrossRef]
Mehta, R. S., Haworth, D. C., and Modest, M. F., 2009, “An Assessment of Gas-Phase Reaction Mechanisms and Soot Models for Laminar Atmospheric-Pressure Ethylene–Air Flames,” Proc. Combust. Inst., 32(1), pp. 1327–1334. [CrossRef]
Saffaripour, M., Zabeti, P., Dworkin, S. B., Zhang, Q., Guo, H., Liu, F., Smallwood, G. J., and Thomson, M. J., 2011, “A Numerical and Experimental Study of a Laminar Sooting Coflow Jet-A1 Diffusion Flame,” Proc. Combust. Inst., 33(1), pp. 601–608. [CrossRef]
Sacadura, J. F., 2005, “Radiative Heat Transfer in Fire Safety Science,” J. Quant. Spectrosc. Ra., 93(1), pp. 5–24. [CrossRef]
Fuss, S. P., Ezekoye, O. A., and Hall, M. J., 1996, “The Absorptance of Infrared Radiation by Methane at Elevated Temperatures,” ASME J. Heat Transfer, 118(4), pp. 918–923. [CrossRef]
Cai, J., Lu, N., and Sorensen, C. M., 1995, “Analysis of Fractal Cluster Morphology Parameters: Structural Coefficient and Density Autocorrelation Function Cutoff,” J. Coll. Interf. Sci., 171(2), pp. 470–473. [CrossRef]
Köylü, Ü. Ö., and Faeth, G. M., 1994, “Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Soot Flames at Long Residence Times,” ASME J. Heat Transfer, 116(1), pp. 152–159. [CrossRef]
Zhu, J., Choi, M. Y., Mulholland, G. W., and Gritzo, L. A., 2000, “Measurement of Soot Optical Properties in the Near-Infrared Spectrum,” Int. J. Heat Mass Tran., 43(18), pp. 3299–3303. [CrossRef]
Upadhyay, R. R., and Ezekoye, O. A., 2005, “Smoke Buildup and Light Scattering in a Cylindrical Cavity Above a Uniform Flow,” J. Aerosol Sci., 36(4), pp. 471–493. [CrossRef]
Daun, K. J., Stagg, B. J., Liu, F., Smallwood, G. J., and Snelling, D. R., 2007, “Determining Aerosol Particle Size Distributions Using Time-Resolved Laser-Induced Incandescence,” Appl. Phys. B, 87(2), pp. 363–372. [CrossRef]
Dembele, S., Delmas, A., and Sacadura, J. F., 1997, “A Method for Modeling the Mitigation of Hazardous Fire Thermal Radiation by Water Spray Curtains,” ASME J. Heat Transfer, 119(4), pp. 746–753. [CrossRef]
Li, G., and Modest, M. F., 2002, “Application of Composition PDF Methods in the Investigation of Turbulence–Radiation Interactions,” J. Quant. Spectrosc. Ra., 73(2), pp. 461–472. [CrossRef]
Bal, N., and Rein, G., 2011, “Numerical Investigation of the Ignition Delay Time of a Translucent Solid at High Radiant Heat Fluxes,” Combust. Flame, 158(6), pp. 1109–1116. [CrossRef]
Mell, W. E., and Lawson, J. R., 2000, “A Heat Transfer Model for Firefighters' Protective Clothing,” Fire Tech., 36(1), pp. 39–68. [CrossRef]
Smagorinsky, J., 1963, “General Circulation Experiments With the Primitive Equations. I. The Basic Experiment,” Monthly Weather Rev., 91(3), pp. 99–164. [CrossRef]
Deardorff, J. W., 1972, “Numerical Investigation of Neutral and Unstable Planetary Boundary Layers,” J. Atmosph. Sci., 29, pp. 91–115. [CrossRef]
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., 1991, “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluid. A, 3(7), pp. 1760–1765. [CrossRef]
Cuzzillo, B. R., and Pagni, P. J., 1998, “Thermal Breakage of Double-Pane Glazing by Fire,” J. Fire Protect. Eng., 9(1), pp. 1–11. [CrossRef]
Usmani, A. S., Rotter, J. M., Lamont, S., Sanad, A. M., and Gillie, M., 2001, “Fundamental Principles of Structural Behaviour Under Thermal Effects,” Fire Safe. J., 36, pp. 721–744. [CrossRef]
Hu, G., Morovat, M. A., Lee, J., Schell, E., and Engelhardt, M. D., 2009, “Elevated Temperature Properties of ASTM A992 Steel,” Proceedings of the ASCE Structure Congress, Vol. 9, pp. 1–10. [CrossRef]
CEN Eurocodes 0-9, 2005, BS EN 1990-1999, British Standards Institution, London.
Cox, G., and Kumar, S., 2002, “Modeling Enclosure Fires Using CFD,” SFPE Handbook for Fire Protection Engineering, 3rd ed., National Fire Protection Association, Quincy, MA, Chap. 8.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC.
Kumar, S., Welch, S., Miles, S. D., Cajot, L.-G., Haller, M., Ojanguren, M., Barco, J., Hostikka, S., Max, U., and Röhrle, A., 2005, “Natural Fire Safety Concept—The Development and Validation of a CFD-Based Engineering Methodology for Evaluating Thermal Action on Steel and Composite Structures,” European Commission, Report No. EUR 21444 EN.
Thomas, P. H., and Nilsson, L., 1973, “Fully-Developed Compartment Fires: New Correlations of Burning Rates,” Fire Research Station, Borehamwood, England, UK, Fire Research Note 979.
Harmathy, T. Z., 1981, “The Fire Resistance Test and Its Relation to Real-World Fires,” Fire Mater., 5(3), pp. 112–122. [CrossRef]
Gwynne, S., Galea, E. R., Lawrence, P. J., and Filippidis, L., 2001, “Modelling Occupant Interaction With Fire Conditions Using the Building EXODUS Evacuation Model,” Fire Safe. J., 36(4), pp. 327–357. [CrossRef]
Gaunt, R., 2000, MELCOR Computer Code Manuals: Reference Manuals Version 1.8.5, Vol. 2, Rev. 2, U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-6119.
Heskestad, G., and Bill, R. G., 1988, “Quantification of Thermal Responsiveness of Automatic Sprinklers Including Conduction Effects,” Fire Safe J., 14, pp. 113–125. [CrossRef]
Cleary, T., Chernovsky, A., Grosshandler, W., and Anderson, M., 1999, “Particulate Entry Lag in Spot-Type Smoke Detectors,” Fire Safety Science—Proceedings of the 6th International Symposium, International Association for Fire Safety Science, pp. 779–790.
Welsh, S., and Rubini, P., 1997, “Three-Dimensional Simulation of a Fire-Resistance Furnace,” Fire Safety Science—Proceedings of the 5th International Symposium, International Association for Fire Safety Science.
Wickström, U., Duthinh, D., and McGrattan, K. B., 2007, “Adiabatic Surface Temperature for Calculating Heat Transfer to Fire Exposed Structures,” Proceedings of the 11th International Interflam Conference, Interscience Communications, London.
American Society for Testing and Materials, 2004, “Standard Guide for Evaluating the Predictive Capabilities of Deterministic Fire Models,” ASTM E 1355-04.
Hill, K., Dreisbach, J., Joglar, F., Najafi, B., McGrattan, K., Peacock, R., and Hamins, A., 2007, “Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications,” United States Nuclear Regulatory Commission, Washington, DC, Report No. NUREG 1824.
Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia.
Upadhyay, R. R., and Ezekoye, O. A., 2008, “Treatment of Design Fire Uncertainty Using Quadrature Method of Moments,” Fire Safe. J., 43(2), pp. 127–139. [CrossRef]
Upadhyay, R. R., Miki, K., Ezekoye, O. A., and Marschall, J., 2011, “Uncertainty Quantification of a Graphite Nitridation Experiment Using a Bayesian Approach,” Exp. Therm. Fluid. Sci., 35(8), pp. 1588–1599. [CrossRef]
Beck, J. V., St. Clair, C. R., and Blackwell, B., 1985, Inverse Heat Conduction, John Wiley and Sons, New York.
Özişik, M. N., and Orlande, H. R., 2000, Inverse Heat Transfer: Fundamentals and Applications, Taylor & Francis, New York.
Hansen, P. C., 1987, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Enversion, Vol. 4, Society for Industrial Mathematics, Philadelphia.
Richards, R. F., Munk, B. N., and Plumb, O. A., 1997, “Fire Detection, Location and Heat Release Rate Through Inverse Problem Solution—Part I: Theory,” Fire Safe. J., 28(4), pp. 323–350. [CrossRef]
Jahn, W., Rein, G., and Torero, J. L., 2001, “Forecasting Fire Growth Using an Inverse Zone Modelling Approach,” Fire Safe. J., 46(3), pp. 81–88. [CrossRef]
Overholt, K. J., and Ezekoye, O. A., 2012, “Characterizing Heat Release Rates Using an Inverse Fire Modeling Technique,” Fire Tech., 48(4), pp. 893–909. [CrossRef]
Evans, D. D., 2003, “First Responders: Problems and Solutions: Tactical Information,” Tech. Soc., 25(4), pp. 523–528. [CrossRef]
Jones, W. W., and Bukowski, R. W., 2001, “Critical Information for First Responders, Whenever and Wherever Its Needed,” Proceedings of 9th International Interflam Conference, Vol. 2.
Lam, C. S., and Weckman, E. J., 2009, “Steady-State Heat Flux Measurements in Radiative and Mixed Radiative–Convective Environments,” Fire Mater., 33(7), pp. 303–321. [CrossRef]
Ertürk, H., Ezekoye, O. A., and Howell, J. R., 2002, “The Application of an Inverse Formulation in the Design of Boundary Conditions for Transient Radiating Enclosures,” ASME J. Heat Transfer, 124(6), pp. 1095–1102. [CrossRef]

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In