Research Papers

Review of Heat Transfer Research for Solar Thermochemical Applications

[+] Author and Article Information
W. Lipiński

e-mail: lipinski@umn.edu

J. H. Davidson, L. Venstrom

Department of Mechanical Engineering,
University of Minnesota,
Minneapolis, MN 55455

S. Haussener

Institute of Mechanical Engineering,
Lausanne 1015, Switzerland;
Environmental Energy Technologies Division,
Lawrence Berkeley National Laboratory,
Berkeley, CA 94720

A. M. Mehdizadeh

Department of Mechanical and Aerospace Engineering,
University of Florida,
Gainesville, FL 32611

J. Petrasch

Energy Research Center,
Vorarlberg University of Applied Sciences,
Dornbirn 6850, Austria

A. Steinfeld

Department of Mechanical and Process Engineering,
ETH Zurich,
Zurich 8092, Switzerland;
Solar Technology Laboratory,
Paul Scherrer Institute,
Villigen 5232, Switzerland

1Corresponding author.

Manuscript received October 13, 2012; final manuscript received March 9, 2013; published online May 17, 2013. Assoc. Editor: S. A. Sherif.

J. Thermal Sci. Eng. Appl 5(2), 021005 (May 17, 2013) (14 pages) Paper No: TSEA-12-1173; doi: 10.1115/1.4024088 History: Received October 13, 2012; Revised March 09, 2013

This article reviews the progress, challenges and opportunities in heat transfer research as applied to high-temperature thermochemical systems that use high-flux solar irradiation as the source of process heat. Selected pertinent areas such as radiative spectroscopy and tomography-based heat and mass characterization of heterogeneous media, kinetics of high-temperature heterogeneous reactions, heat and mass transfer modeling of solar thermochemical systems, and thermal measurements in high-temperature systems are presented, with brief discussions of their methods and example results from selected applications.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Fletcher, E. A., 2001, “Solarthermal Processing: A Review,” ASME J. Sol. Energy Eng., 123(2), pp. 63–74. [CrossRef]
Kodama, T., 2003, “High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels,” Prog. Energ. Combust. Sci., 29, pp. 567–597. [CrossRef]
Steinfeld, A., and Palumbo, R., 2001, “Solar Thermochemical Process Technology,” Encyclopedia of Physical Science and Technology, Vol. 15, R. A.Meiers, ed., Academic Press, San Diego, pp. 237–256.
Hirsch, D., Epstein, M., and Steinfeld, A., 2001, “The Solar Thermal Decarbonization of Natural Gas,” Int. J. Hyd. Energ., 26, pp. 1023–1033. [CrossRef]
Dahl, J. K., Weimer, A. W., Lewandowski, A., Bingham, C., Brütsch, F., and Steinfeld, A., 2004, “Dry Reforming of Methane Using a Solar-Thermal Aerosol Flow Reactor,” Ind. Eng. Chem. Res., 43, pp. 5489–5495. [CrossRef]
Piatkowski, N., and Steinfeld, A., 2008, “Solar-Driven Coal Gasification in a Thermally Irradiated Packed-Bed Reactor,” Energ. Fuel., 22, pp. 2043–2052. [CrossRef]
Hathaway, B. J., Davidson, J. H., and Kittelson, D. B., 2011, “Solar Gasification of Biomass: Kinetics of Pyrolysis and Steam Gasification in Molten Salt,” ASME J. Sol. Energy Eng., 133(2), p. 021011. [CrossRef]
Tamaura, Y., Kojima, M., Hasegawa, N., Tsuji, M., Ehrensberger, K., and Steinfeld, A., 1997, “Solar Energy Conversion Into H2 Energy Using Ferrites,” J. Phys. IV, 7, pp. 673–674. [CrossRef]
Steinfeld, A., 2002, “Solar Hydrogen Production via a 2-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions,” Int. J. Hyd. Energ., 27, pp. 611–619. [CrossRef]
Chueh, W. C., and Haile, S. M., 2009, “Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2,” ChemSusChem, 2, pp. 735–739. [CrossRef] [PubMed]
Alvani, C., Bellusci, M., La Barbera, A., Padella, F., Pentimalli, M., Seralessandri, L., and Varsano, F., 2009, “Reactive Pellets for Improved Solar Hydrogen Production Based on Sodium Manganese Ferrite Thermochemical Cycle,” ASME J. Sol. Energy Eng., 131(3), p. 031015. [CrossRef]
Fresno, F., Yoshida, T., Gokon, N., Fernandez-Saavedra, R., and Kodama, T., 2010, “Comparative Study of the Activity of Nickel Ferrites for Solar Hydrogen Production by Two-Step Thermochemical Cycles,” Int. J. Hyd. Energ., 35, pp. 8503–8510. [CrossRef]
Kogan, A., 2000, “Direct Solar Thermal Splitting of Water and On-Site Separation of the Products—IV. Development of Porous Ceramic Membranes for a Solar Thermal Water-Splitting Reactor,” Int. J. Hyd. Energ., 25, pp. 1043–1050. [CrossRef]
Meier, A., Bonaldi, E., Cella, G. M., Lipiński, W., and Wuillemin, D., 2006, “Solar Chemical Reactor Technology for Industrial Production of Lime,” Solar Energ., 80, pp. 1355–1362. [CrossRef]
Gálvez, M. E., Halmann, M., and Steinfeld, A., 2007, “Ammonia Production via a Two-Step Al2O3/AlN Thermochemical Cycle. 1. Thermodynamic, Environmental, and Economic Analyses,” Ind. Eng. Chem. Res., 46, pp. 2042–2046. [CrossRef]
Schaffner, B., Hoffelner, W., and Steinfeld, A., 2000, “Recycling of Hazardous Solid Waste Material Using High-Temperature Solar Process Heat. 1. Thermodynamic Analysis,” Environ. Sci. Tech., 34, pp. 4177–4184. [CrossRef]
Matthews, L., and Lipiński, W., 2012, “Thermodynamic Analysis of Solar Thermochemical CO2 Capture via Carbonation/Calcination Cycle With Heat Recovery,” Energy, 45, pp. 900–907. [CrossRef]
Palumbo, R., Keunecke, M., Möller, S., and Steinfeld, A., 2004, “Reflections on the Design of Solar Thermal Chemical Reactors: Thoughts in Transformation,” Energy, 29, pp. 727–744. [CrossRef]
Mischler, D., and Steinfeld, A., 1995, “Nonisothermal Nongray Absorbing-Emitting-Scattering Suspension of Fe3O4 Particles Under Concentrated Solar Irradiation,” ASME J. Heat Transfer, 117(2), pp. 346–354. [CrossRef]
Von Zedtwitz, P., and Steinfeld, A., 2005, “Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation—Modeling and Experimental Validation,” Ind. Eng. Chem. Res., 44, pp. 3852–3861. [CrossRef]
Schunk, L. O., Lipiński, W., and Steinfeld, A., 2009, “Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW,” Chem. Eng. J., 150, pp. 502–508. [CrossRef]
Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S. M., and Steinfeld, A., 2010, “High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria,” Science, 330, pp. 1797–1801. [CrossRef] [PubMed]
Wyss, J., Martinek, J., Kerins, M., Dahl, J. K., Weimer, A., Lewandowski, A., Bingham, C., 2007, “Rapid Solar-Thermal Decarbonization of Methane in a Fluid-Wall Aerosol Flow Reactor: Fundamentals and Application,” Int. J. Chem. React. Eng., 5, p. A69. [CrossRef]
Kaviany, M., 2008, Heat Transfer Physics, Cambridge University Press, Cambridge.
Zhang, Z. M., 2007, Nano/Microscale Heat Transfer, McGraw-Hill, New York.
Chen, G., 2005, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, Oxford.
Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
Petkovich, N. D., Rudisill, S. G., Venstrom, L. J., Boman, D. B., Davidson, J. H., and Stein, A., 2011, “Control of Heterogeneity in Nanostructured Ce1−xZrxO2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity,” J. Phys. Chem., 115, pp. 21022–21033. [CrossRef]
Akolkar, A., and Petrasch, J., 2011, “Tomography Based Pore-Level Optimization of Radiative Transfer in Porous Media,” Int. J. Heat Mass Tran., 54, pp. 4775–4783. [CrossRef]
Akolkar, A., and Petrasch, J., 2012, “Tomography-Based Characterization and Optimization of Fluid Flow Through Porous Media,” Transp. Porous Med., 95, pp. 535–550. [CrossRef]
Norton, W. H., 1993, The Norton History of Chemistry, W.W. Norton, New York.
Trombe, F., and Foex, M., 1951, “Essai de Metallurgie du Chrome par l'Hydrogene au Four Solaire,” Rev. Metall., 48, pp. 359–362.
Nakamura, T., 1977, “Hydrogen Production From Water Utilizing Solar Heat at High Temperatures,” Solar Energ., 19, pp. 467–475. [CrossRef]
Fletcher, E. A., and Moen, R. L., 1977, “Hydrogen and Oxygen From Water,” Science, 197, pp. 1050–1056. [CrossRef] [PubMed]
Modest, M. F., 2003, Radiative Heat Transfer, 3rd ed., Academic Press, Amsterdam.
Haussener, S., Lipiński, W., Petrasch, J., Wyss, P., and Steinfeld, A., 2009, “Tomographic Characterization of a Semitransparent-Particle Packed Bed and Determination of Its Thermal Radiative Properties,” ASME J. Heat Transfer, 131(7), p. 072701. [CrossRef]
Lipiński, W., Petrasch, J., and Haussener, S., 2010, “Application of the Spatial Averaging Theorem to Radiative Heat Transfer in Two-Phase Media,” J. Quant. Spectrosc. Rad. T., 111, pp. 253–258. [CrossRef]
Lipiński, W., Keene, D., Haussener, S., and Petrasch, J., 2010, “Continuum Radiative Heat Transfer Modeling in Media Consisting of Optically Distinct Components in the Limit of Geometrical Optics,” J. Quant. Spectrosc. Rad. T., 111, pp. 2474–2480. [CrossRef]
Baillis, D., and Sacadura, J.-F., 2000, “Thermal Radiation Properties of Dispersed Media: Theoretical Prediction and Experimental Characterization,” J. Quant. Spectrosc. Rad. T., 67, pp. 327–363. [CrossRef]
Agarwal, B. M., and Mengüç, M., 1991, “Forward and Inverse Analysis of Single and Multiple Scattering of Collimated Radiation in an Axisymmetric System,” Int. J. Heat Mass Tran., 34, pp. 633–647. [CrossRef]
Osinga, T., Frommherz, U., Steinfeld, A., and Wieckert, C., 2004, “Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-Cavity Solar Reactor,” ASME J. Sol. Energy Eng., 126(1), pp. 633–637. [CrossRef]
Osinga, T., Lipiński, W., Guilot, E., Olalde, G., and Steinfeld, A., 2006, “Experimental Determination of the Extinction Coefficient for a Packed-Bed Particulate Medium,” Exp. Heat Trans., 19, pp. 69–79. [CrossRef]
Lipiński, W., Guillot, E., Olalde, G., and Steinfeld, A., 2008, “Transmittance Enhancement of Packed-Bed Particulate Media,” Exp. Heat Trans., 21, pp. 73–82. [CrossRef]
Jäger, K., Lipiński, W., Katzgraber, H. G., and Steinfeld, A., 2009, “Determination of Thermal Radiative Properties of Packed-Bed Media Containing a Mixture of Polydispersed Particles,” Int. J. Therm. Sci., 48, pp. 1510–1516. [CrossRef]
Coray, P., Lipiński, W., and Steinfeld, A., 2011, “Spectroscopic Goniometry System for Determining Thermal Radiative Properties of Participating Media,” Exp. Heat Trans., 24, pp. 300–312. [CrossRef]
Coray, P., Petrasch, J., Lipiński, W., and Steinfeld, A., 2007, “Determination of Radiative Characteristics of Reticulate Porous Ceramics,” M. P.Mengüç, and N.Selçuk, eds., Proceedings of the 5th International Symposium on Radiative Transfer RAD-V, Bodrum, Turkey, June 17–22.
Coray, P., Lipiński, W., and Steinfeld, A., 2010, “Experimental and Numerical Determination of Thermal Radiative Properties of ZnO Particulate Media,” ASME J. Heat Transfer, 132(1), p. 012701. [CrossRef]
Liang, Z., Chueh, W. C., Ganesan, K., Haile, S. M., and Lipiński, W., 2011, “Experimental Determination of Transmittance of Porous Cerium Dioxide Media in the Spectral Range 300–1,100 nm,” Exp. Heat Trans., 24, pp. 285–299. [CrossRef]
Ganesan, K., and Lipiński, W., 2011, “Experimental Determination of Spectral Transmittance of Porous Cerium Dioxide in the Range 900–1700 nm,” ASME J. Heat Transfer, 133(10), p. 104501. [CrossRef]
Dombrovsky, L., Ganesan, K., and Lipiński, W., 2012, “Combined Two-Flux Approximation and Monte Carlo Model for Identification of Radiative Properties of Highly Scattering Dispersed Materials,” Comput. Therm. Sci., 4, pp. 365–378. [CrossRef]
Ganesan, K., Dombrovsky, L. A., and Lipiński, W., 2013, “Visible and Near-Infrared Optical Properties of Ceria Ceramics,” Infrared Phys. Techn., 57, pp. 101–109. [CrossRef]
Berryman, J., and Blair, S., 1986, “Use of Digital Image Analysis to Estimate Fluid Permeability of Porous Material: Application of Two-Point Correlation Functions,” J. Appl. Phys., 60, pp. 1930–1938. [CrossRef]
Rintoul, M., Torquato, S., Yeong, C., Keane, D., Erramilli, S., Jun, Y., Dabbs, D., and Aksay, I., 1996, “Structure and Transport Properties of a Porous Magnetic Gel via X-ray Microtomography,” Phys. Rev. E, 54, pp. 2663–2669. [CrossRef]
Tancrez, M., and Taine, J., 2004, “Direct Identification of Absorption and Scattering Coefficients and Phase Function of a Porous Medium by a Monte Carlo Technique,” Int. J. Heat Mass Tran., 47, pp. 373–383. [CrossRef]
Zeghondy, B., Iacona, E., and Taine, J., 2006, “Determination of the Anisotropic Radiative Properties of a Porous Material by Radiative Distribution Function Identification (RDFI),” Int. J. Heat Mass Tran., 49, pp. 2810–2819. [CrossRef]
Petrasch, J., Wyss, P., and Steinfeld, A., 2007, “Tomography-Based Monte Carlo Determination of Radiative Properties of Reticulate Porous Ceramics,” J. Quant. Spectrosc. Ra., 105, pp. 180–197. [CrossRef]
Petrasch, J., Wyss, P., Stämpfli, R., and Steinfeld, A., 2008, “Tomography-Based Multiscale Analyses of the 3D Geometrical Morphology of Reticulated Porous Ceramics,” J. Am. Ceram. Soc., 91, pp. 2659–2665. [CrossRef]
Petrasch, J., Schrader, B., Wyss, P., and Steinfeld, A., 2008, “Tomography-Based Determination of the Effective Thermal Conductivity of Reticulate Porous Ceramics,” ASME J. Heat Transfer, 103(3), p. 032602. [CrossRef]
Petrasch, J., Meier, F., Friess, H., and Steinfeld, A., 2008, “Tomography Based Determination of Permeability, Dupuit–Forchheimer Coefficient, and Interfacial Heat Transfer Coefficient in Reticulate Porous Ceramics,” Int. J. Heat Fluid Flow, 29, pp. 315–326. [CrossRef]
Haussener, S., Coray, P., Lipiński, W., Wyss, P., and Steinfeld, A., 2010, “Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing,” ASME J. Heat Transfer, 132(2), p. 023305. [CrossRef]
Haussener, S., Lipiński, W., Wyss, P., and Steinfeld, A., 2010, “Tomography-Based Analysis of Radiative Transfer in Reacting Packed Beds Undergoing a Solid-Gas Thermochemical Transformation,” ASME J. Heat Transfer, 132(6), p. 061201. [CrossRef]
Haussener, S., Jerjen, I., Wyss, P., and Steinfeld, A., 2012, “Tomography-Based Determination of Effective Transport Properties for Reacting Porous Media,” ASME J. Heat Transfer, 134(1), p. 012601. [CrossRef]
Haussener, S., and Steinfeld, A., 2012, “Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation,” Materials, 5, pp. 192–209. [CrossRef]
Abanades, S., and Villafan-Vidales, H. I., 2011, “CO2 and H2O Conversion to Solar Fuels via Two-Step Solar Thermochemical Looping Using Iron Oxide Redox Pair,” Chem. Eng. J., 175, pp. 368–375 [CrossRef]
Abanades, S., and Le Gal, A., 2012, “CO2 Splitting by Thermo-Chemical Looping Based on ZrxCe1−xO2 Oxygen Carriers for Synthetic Fuel Generation,” Fuel, 102, pp. 180–186. [CrossRef]
Chiron, F.-X., and Patience, G. S., 2012, “Kinetics of Mixed Copper–Iron Based Oxygen Carriers for Hydrogen Production by Chemical Looping Water Splitting,” Int. J. Hyd. Energ., 37, pp. 10526–10538. [CrossRef]
Go, K. S., Son, S. E., and Kim, S. D., 2008, “Reaction Kinetics of Reduction and Oxidation of Metal Oxides for Hydrogen Production,” Int. J. Hyd. Energ., 33, pp. 5986–5995. [CrossRef]
Tabatabaie-Raissi, A., Narayan, R., Mok, W. S. L., and Antal, J., Jr., 1989, “Solar Thermal, Decomposition Kinetics of Zinc Sulfate at High Heating Rates,” Indust. Eng. Chem. Res., 28, pp. 355–362. [CrossRef]
Tabatabaie-Raissi, A., Mok, W. S. L., and Antal, J., Jr., 1989, “Cellulose Pyrolysis Kinetics in a Simulated Solar Environment,” Indust. Eng. Chem. Res., 28, pp. 856–865. [CrossRef]
Schunk, L. O., and Steinfeld, A., 2009, “Kinetics of the Thermal Dissociation of ZnO Exposed to Concentrated Solar Irradiation Using a Solar-Driven Thermogravimeter in the 1800–2100 K Range,” AIChe J., 55, pp. 1497–1504. [CrossRef]
Dombrovsky, L., Schunk, L., Lipiński, W., and Steinfeld, A., 2009, “An Ablation Model for the Thermal Decomposition of Porous Zinc Oxide Layer Heated by Concentrated Solar Radiation,” Int. J. Heat Mass Tran., 52, pp. 2444–2452. [CrossRef]
Schunk, L. O., Lipiński, W., and Steinfeld, A., 2009, “Ablative Heat Transfer in a Shrinking Packed-Bed of ZnO Undergoing Solar Thermal Dissociation,” AIChE J., 55, pp. 1659–1659. [CrossRef]
Chen, S., Shi, Q., Xue, Z., Sun, X., and Xiang, W., 2011, “Experimental Investigation of Chemical-Looping Hydrogen Generation Using Al2O3 or TiO2-Supported Iron Oxides in a Batch Fluidized Bed,” Int. J. Hyd. Energ., 36, pp. 8915–8926. [CrossRef]
Rydén, M., and Arjmand, M., 2012, “Continuous Hydrogen Production via the Steam–Iron Reaction by Chemical Looping in a Circulating Fluidized-Bed Reactor,” Int. J. Hyd. Energ., 37, pp. 4843–4854. [CrossRef]
Singh, A., Al-Raqom, F., Klausner, J. F., and Petrasch, J., 2012, “Production of Hydrogen via an Iron/Iron Oxide Looping Cycle: Thermodynamic Modeling and Experimental Validation,” Int. J. Hyd. Energ., 37, pp. 7442–7450. [CrossRef]
Mehdizadeh, M. A., Klausner, J. F., Mei, R., and Barde, A., 2012, “Enhancement of Thermochemical Hydrogen Production Using an Iron-Silica Magnetically Stabilized Porous Structure,” Int. J. Hyd. Energ., 37, pp. 8954–8963. [CrossRef]
Mehdizadeh, A. M., Klausner, J. F., Barde, A., Rahmatian, N., and Mei, R., 2012, “Investigation of Hydrogen Production Reaction Kinetics for an Iron-Silica Magnetically Stabilized Porous Structure,” Int. J. Hyd. Energ., 37, pp. 13263–13271. [CrossRef]
Stamatiou, A., Loutzenhiser, P. G., and Steinfeld, A., 2012, “Syngas Production From H2O and CO2 Over Zn Particles in a Packed-Bed Reactor,” AIChE J., 58, pp. 625–631. [CrossRef]
Agrafiotis, C., Roeb, C., Konstandopoulos, A. G., Nalbandian, L., Zaspalis, V. T., Sattler, C., Stobbe, P., and Steele, A. M., 2005, “Solar Water Splitting for Hydrogen Production With Monolithic Reactors,” Solar Energ., 79, pp. 409–421. [CrossRef]
Roeb, M., Neises, M., Säck, J.-P., Rietbrock, P., Monnerie, N., Dersch, J., Schmitz, M., and Sattler, C., 2009, “Operational Strategy of a Two-Step Thermochemical Process for Solar Hydrogen Production,” Int. J. Hyd. Energ., 34, pp. 4537–4545. [CrossRef]
Roeb, M., Säck, J.-P., Rietbrock, P., Prahl, C., Schreiber, H., Neises, M., De Oliveira, L., Graf, D., Ebert, M., Reinalter, W., Meyer-Grünefeldt, M., Sattler, C., Lopez, A., Vidal, A., Elsberg, A., Stobbe, P., Jones, D., Steele, A., Lorentzou, S., Pagkoura, C., Zygogianni, Z., Agrafiotis, C., and Konstandopoulos, A. G., 2011, “Test Operation of a 100 kW Pilot Plant for Solar Hydrogen Production From Water on a Solar Tower,” Solar Energ., 85, pp. 634–644. [CrossRef]
Furler, P., Scheffe, J. R., and Steinfeld, A., 2012, “Syngas Production by Simultaneous Splitting of H2O and CO2 via Ceria Redox Reactions in a High-Temperature Solar Reactor,” Energ. Environ. Sci., 5, pp. 6098–6103. [CrossRef]
Stehle, R. C., Bobek, M. M., Hooper, R., and Hahn, D. W., 2011, “Oxidation Reaction Kinetics for the Steam-Iron Process in Support of Hydrogen Production,” Int. J. Hyd. Energ., 36, pp. 15125–15135. [CrossRef]
Klausner, J. F., Hahn, D. W., Petrasch, J., Mei, R., Mehdizadeh, A. M., Barde, A., Allen, K., Rahmatian, N., Stehle, R. C., Bobek, S. M., Al-Raqom, F., Greek, B., Li, L., Abhishek, S., and Takagi, M., 2010, “Novel Magnetically Fluidized Bed Reactor Development for the Looping Process: Coal to Hydrogen Production R&D,” DOE NETL Quarterly Report 6, Project DE-FE0001321.
Hui, W., Xiaoqiong, F., Xiaofang, W., Sanping, C., and Shengli, G., 2008, “Hydrogen Production by Redox of Bimetal Cation-Modified Iron Oxide,” Int. J. Hyd. Energ., 33, pp. 7122–7128. [CrossRef]
Kodama, T., Imaizumi, N., Gokon, N., Hatamachi, T., Aoyagi, D., and Kondo, K., 2011, “Comparison Studies of Reactivity on Nickel-Ferrite and Cerium-Oxide Redox Materials for Two-Step Thermochemical Water Splitting Below 1400 °C,” Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, Aug. 7–10. [CrossRef]
Otsuka, K., Kaburagi, T., Yamada, C., and Takenaka, S., 2003, “Chemical Storage of Hydrogen by Modified Iron Oxides,” J. Power Source., 122, pp. 111–21. [CrossRef]
Farmer, J. T., and Howell, J. R., 1998, “Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media,” Advances in Heat Transfer, Vol. 31, J. P.Hartnett, T. F.Irvine, Jr., Y. I.Cho, and G. A.Greene, eds., Academic Press, New York, pp. 333–429.
Chai, J. C., and Patankar, S. V., 2000, “Finite-Volume Method for Radiation Heat Transfer,” Advances in Numerical Heat Transfer, Vol. 2, W. J.Minkowycz, and E. M.Sparrow, eds., Taylor & Francis, New York, pp. 109–141.
Martinek, J., and Weimer, A. W., 2013, “Evaluation of Finite Volume Solutions for Radiative Heat Transfer in a Closed Cavity Solar Receiver for High Temperature Solar Thermal Processes,” Int. J. Heat Mass Tran., 58, pp. 585–596. [CrossRef]
Piatkowski, N., Wieckert, C., Weimer, A. W., and Steinfeld, A., 2011, “Solar-Driven Gasification of Carbonaceous Feedstock—A Review,” Energ. Environ. Sci., 4, pp. 73–82. [CrossRef]
Z'Graggen, A., and Steinfeld, A., 2008, “A Two-Phase Reactor Model for the Steam-Gasification of Carbonaceous Materials Under Concentrated Thermal Radiation,” Chem. Eng. Process., 47, pp. 655–662. [CrossRef]
Z'Graggen, A., and Steinfeld, A., 2009, “Heat and Mass Transfer Analysis of a Suspension of Reacting Particles Subjected to Concentrated Solar Radiation—Application to the Steam-Gasification of Carbonaceous Materials,” Int. J. Heat Mass Tran., 52, pp. 385–395. [CrossRef]
Lipiński, W., and Steinfeld, A., 2005, “Transient Radiative Heat Transfer Within a Suspension of Coal Particles Undergoing Steam Gasification,” Heat Mass Transfer, 41, pp. 1021–1032. [CrossRef]
Lipiński, W., Z'Graggen, A., and Steinfeld, A., 2005, “Transient Radiation Heat Transfer Within a Nongray Nonisothermal Absorbing-Emitting-Scattering Suspension of Reacting Particles Undergoing Shrinkage,” Numer. Heat Trans. B., 47, pp. 443–457. [CrossRef]
von Zedtwitz, P., Lipiński, W., and Steinfeld, A., 2007, “Numerical and Experimental Study of Gas-Particle Radiative Heat Exchange in a Fluidized-Bed Reactor for Steam-Gasification of Coal,” Chem. Eng. Sci., 62, pp. 599–607. [CrossRef]
Melchior, T., Perkins, C., Weimer, A. W., and Steinfeld, A., 2008, “A Cavity-Receiver Containing a Tubular Absorber for High-Temperature Thermochemical Processing Using Concentrated Solar Energy,” Int. J. Therm. Sci., 47, pp. 1496–1503. [CrossRef]
Melchior, T., and Steinfeld, A., 2008, “Radiative Transfer Within a Cylindrical Cavity With Diffusely/Specularly Reflecting Inner Walls Containing an Array of Tubular Absorbers,” ASME J. Sol. Energy Eng., 130(2), p. 021013. [CrossRef]
Loutzenhiser, P., Meier, A., and Steinfeld, A., 2010, “Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions,” Materials, 3, pp. 4922–4938. [CrossRef]
Perkins, C., and Weimer, A., 2008, “Computational Fluid Dynamics Simulation of a Tubular Aerosol Reactor for Solar Thermal ZnO Decomposition,” ASME J. Sol. Energy Eng., 129(4), pp. 391–404. [CrossRef]
Haussener, S., Hirsch, D., Perkins, C., Weimer, A., Lewandowski, A., and Steinfeld, A., 2009, “Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production,” ASME J. Sol. Energy Eng., 131(2), p. 024503. [CrossRef]
Abanades, S., Charvin, P., Flamant, G., 2007, “Design and Simulation of a Solar Chemical Reactor for the Thermal Reduction of Metal Oxides: Case Study of Zinc Oxide Dissociation,” Chem. Eng. Sci., 62, pp. 6323–6333. [CrossRef]
Lipiński, W., Thommen, D., and Steinfeld, A., 2006, “Unsteady Radiative Heat Transfer Within a Suspension of ZnO Particles Undergoing Thermal Dissociation,” Chem. Eng. Sci., 61, pp. 7029–7035. [CrossRef]
Dombrovsky, L. A., Lipiński, W., and Steinfeld, A., 2007, “A Diffusion-Based Approximate Model for Radiation Heat Transfer in a Solar Thermochemical Reactor,” J. Quant. Spetrosc. Ra., 103, pp. 601–610. [CrossRef]
Müller, R., and Steinfeld, A., 2007, “Band-Approximated Radiative Heat Transfer Analysis of a Solar Chemical Reactor for the Thermal Dissociation of Zinc Oxide,” Solar Energ., 81, pp. 1285–1294. [CrossRef]
Müller, R., Lipiński, W., and Steinfeld, A., 2008, “Transient Heat Transfer in a Directly Irradiated Solar Chemical Reactor for the Thermal Dissociation of ZnO,” Appl. Therm. Eng., 28, pp. 524–531. [CrossRef]
Meier, A., and Sattler, C., 2009, “Solar Fuels From Concentrated Sunlight,” SolarPACES Report.
Trombe, F., and Vinh, A. L. P., 1973, “Thousand kW Solar Furnace, Built by the National Center of Scientific Research, in Odeillo (France),” Solar Energ., 15, pp. 57–61. [CrossRef]
Hirsch, D., Von Zedtwitz, P., Osinga, T., Kinamore, J., and Steinfeld, A., 2003, “A New 75 kW High-Flux Solar Simulator for High-Temperature Thermal and Thermochemical Research,” ASME J. Sol. Energy Eng., 125(1), pp. 117–120. [CrossRef]
Petrasch, J., Coray, P., Meier, A., Brack, M., Häberling, P., Wuillemin, D., and Steinfeld, A., 2007, “A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps,” ASME J. Sol. Energy Eng., 129(4), pp. 405–411. [CrossRef]
Krueger, K. R., Davidson, J. H., and Lipiński, W., 2011, “Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research,” ASME J. Sol. Energy Eng., 133(1), p. 011013. [CrossRef]
Krueger, K. R., Lipiński, W., and Davidson, J. H., “Operational Performance of the University of Minnesota 45 kWe High-Flux Solar Simulator,” ASME J. Solar Energ. Eng. (in press).
Thalhammer, E., 1979, “Heliostat Beam Characterization System—-Update” Proceedings of the ISA/79 Conference, Chicago, IL, pp. 505–521.
Strachan, J. W., 1992, “Revisiting the BCS, A Measurement System for Characterizing the Optics of Solar Collectors,” Proceedings of the 39th International Symposium of Instrument Society of America.
Kaluza, J., and Neumann, A., 2001, “Comparative Measurements of Different Solar Flux Gauge Types,” ASME J. Sol. Energy Eng., 123(3), pp. 251–255. [CrossRef]
Ballestrín, J., Ulmer, S., Morales, A., Barnes, A., Langley, L. W., and Rodríguez, M., 2003, “Systematic Error in the Measurement of Very High Solar Irradiance,” Sol. Energ. Mat. Sol. Cell., 80, pp. 375–381. [CrossRef]
Ballestrín, J., Rodríguez-Alonso, M., Rodriguez, J., Cañadas, I., Barbero, F., Langley, L. W., and Barnes, A., 2006, “Calibration of High-Heat-Flux Sensors in a Solar Furnace,” Metrologia, 43, pp. 495–500. [CrossRef]
Erickson, B., and Petrasch, J., 2012, “Inverse Identification of Intensity Distributions From Multiple Flux Maps in Concentrating Solar Applications,” Eurotherm Conference No. 95: Computational Thermal Radiation in Participating Media IV, J. Phys. Conf. Ser., 369, p. 012014. [CrossRef]
Z'Graggen, A., Friess, H., and Steinfeld, A., 2007, “Gas Temperature Measurement in Radiating Environments Using a Suction Thermocouple Apparatus,” Meas. Sci. Tech., 18(11), pp. 3329–3334. [CrossRef]
Lorenson, C., 1997, “Use of Imaging Pyrometry Sensor in Metallurgical Processes,” Sensors and Modeling in Materials Processing: Techniques and Applications, Proceedings of a Symposium on the Application of Sensors and Modeling to Materials Processing, 126th Annual Meeting of the Minerals, Metals, and Materials Society, pp. 199–205.
Tschudi, H. R., and Morian, G., 2001, “Pyrometric Temperature Measurements in Solar Furnaces,” ASME J. Sol. Energy Eng., 123(2), pp. 164–170. [CrossRef]
Kerr, C., and Ivey, P., 2004, “Optical Pyrometry for Gas Turbine Aeroengines,” Sensor Rev., 24, pp. 378–86. [CrossRef]
Rohner, N., and Neumann, A., 2003, “Measurement of High Temperatures in the DLR Solar Furnace by UV-B Detection,” ASME J. Sol. Energy Eng., 125(2), pp. 152–158. [CrossRef]
Hernandez, D., Olalde, G., Gineste, J. M., and Gueymard, C., 2004, “Analysis and Experimental Results of Solar-Blind Temperature Measurements in Solar Furnaces,” ASME J. Sol. Energy Eng., 126(1), pp. 645–653. [CrossRef]
Freid, A. P., Johnson, P. K., Musella, M., Müller, R., Steinbrenner, J. E., and Palumbo, R. D., 2005, “Solar Blind Pyrometer Temperature Measurements in High Temperature Solar Thermal Reactors: A Method for Correcting the System-Sensor Cavity Reflection Error,” ASME J. Sol. Energy Eng., 127(1), pp. 86–93. [CrossRef]
Pfänder, M., Lupfert, E., and Heller, P., 2006, “Pyrometric Temperature Measurements on Solar Thermal High Temperature Receivers,” ASME J. Sol. Energy Eng., 128(3), pp. 285–292. [CrossRef]
Pfänder, M., Hernandez, D., Neumann, A., Lüpfert, E., Lipiński, W., Tschudi, H.-R., and Ballestrín, J., 2006, “Solar-Blind Pyrometric Temperature Measurements Under Concentrated Solar Radiation,” V.Ruiz, D.Martínez, M.Silva, M.Romero, and M.Brown, eds., Proceedings of the 13th SolarPACES International Symposium on Concentrating Solar Power and Chemical Energy Technologies, Seville, June 20–23.
Smurov, I., Doubenskaia, M., and Bertrand, P., 2006, “Pyrometry in Laser Surface Treatment,” Surf. Coat. Tech., 201, pp. 1955–1961. [CrossRef]
Muller, M., Fabbro, R., El-Rabii, H., and Hirano, K., 2012, “Temperature Measurement of Laser Heated Metals in Highly Oxidizing Environment Using 2D Single-Band and Spectral Pyrometry,” J. Laser Appl., 24, p. 022006. [CrossRef]
Tschudi, H. R., and Schubnell, M., 1995, “Simultaneous Measurement of Irradiation, Temperature and Reflectivity on Hot Irradiated Surfaces,” Appl. Phys. A., 60, pp. 581–587. [CrossRef]
Schubnell, M., Tschudi, H. R., and Müller, C., 1996, “Temperature Measurement Under Concentrated Radiation,” Solar Energ., 58, pp. 69–75. [CrossRef]
Tschudi, H. R., and Schubnell, M., 1999, “Measuring Temperatures in the Presence of External Radiation by Flash Assisted Multiwavelength Pyrometry,” Rev. Sci. Instrum., 70, pp. 2719–2727. [CrossRef]
Hernandez, D., Ciaurriz, C., and Olalde, G., 1991, “Détermination de l’émissivité à haute température à l'aide de systèmes à fibres optiques équipés d'hémisphères réflecteures,” J. Phys. III, 1, pp. 1575–1586. [CrossRef]
Hernandez, D., Olalde, G., Beck, A., and Milcent, E., 1995, “Bicolor Pyroreflectometer Using an Optical Fiber Probe,” Rev. Sci. Instrum., 66, pp. 5548–5551. [CrossRef]
Hernandez, D., and Milcent, E., 1995, “Pyro-réflectomètre bicolore à fibres optiques pour mesures in situ,” J. Phys. III, 5, pp. 999–1011. [CrossRef]
Crane, N. B., 2010, “Pyrometric Temperature Measurement in Concentrated Sunlight With Emissivity Determination,” ASME J. Sol. Energy Eng., 132(1), p. 011007. [CrossRef]
Alxneit, I., 2011, “Measuring Temperatures in a High Concentration Solar Simulator—Demonstration of the Principle,” Solar Energ., 85, pp. 516–522. [CrossRef]
Guesdon, C., Alxneit, I., Tschudi, H. R., Wuillemin, D., and Sturzenneger, M., 2006, “1 kW Imaging Furnace With In Situ Measurement of Surface Temperature,” Rev. Sci. Instrum., 77, p. 035102. [CrossRef]


Grahic Jump Location
Fig. 1

Experimental setups for radiative measurements with packed beds of ZnO and beech charcoal [42]: (a) a fiber optics coupled to a spectrometer, and (b) a photodiode detector. (Reproduced with permission from Taylor & Francis.)

Grahic Jump Location
Fig. 2

Spectroscopic goniometry system for measurements of directional and spectral characteristics of highly attenuating semitransparent media [45]: (1) dual Xe-arc/Cesiwid globar lamp, (2) double monochromator, (3) and (5) imaging lens pairs, (4) sample, (6) rotary detector, (7) beam chopper, (8) lock-in amplifier, and (9) data acquisition system. The x-y-z coordinate system is centered at the pivot point. (Reproduced with permission from Taylor & Francis.)

Grahic Jump Location
Fig. 3

Normalized detector signal in forward direction plotted against three different RPC sample thicknesses at a wavelength of 500 nm and an acceptance opening half angle of 3.6 deg [45,46]. The solid line shows the best fit of the exponential function S = a1 exp(a2t), with S denoting the normalized signal and t the sample thickness. The 95% uncertainty limits are illustrated by the error bars and the dashed lines. (Reproduced with permission from Taylor & Francis.)

Grahic Jump Location
Fig. 4

Normalized detector signal in forward direction for different thicknesses of a ZnO packed-bed sample at a wavelength of 1000 nm [45,47]. The measurement was performed by placing a detector directly on the sample surface, which is equivalent to integrating over an angular range of ±60 deg. The exponential fit is the same type as shown in Fig. 3, but this time it has a significant vertical-axis offset with respect to 100.

Grahic Jump Location
Fig. 5

Sample of RPC foam: (a) top-view photograph and (b) 3D surface rendering of a 15 μm voxel size tomogram; (c) 2D image of a single strut obtained by high-resolution CT of 0.37 μm voxel size [60]

Grahic Jump Location
Fig. 6

Tomography-based Monte Carlo ray-tracing radiative characterization of an RPC: (a) calculated cumulative distribution of extinction path length versus experimentally measured radiation intensity as a function of sample thickness, and (b) scattering phase functions calculated assuming diffusely or specularly reflecting strut surfaces [60]

Grahic Jump Location
Fig. 7

Nu number as a function of Re and Pr numbers [60]

Grahic Jump Location
Fig. 8

Tortuosity distribution as a function of Re number [60]

Grahic Jump Location
Fig. 9

(a) DES simulation of the formed MSPS in a uniform magnetic field [84], and (b) SEM image of MSPS after 11 redox cycles; darker particles are silica and sintered iron chains have lighter tone [76]. (Reproduced with permission from the International Association of Hydrogen Energy.)

Grahic Jump Location
Fig. 10

Comparison of measured and predicted hydrogen production rates at different temperatures [77]. (Reproduced with permission from the International Association of Hydrogen Energy.)

Grahic Jump Location
Fig. 11

Comparison of peak hydrogen production rates for repeated redox cycles using different reactive materials [28,76,85-87]

Grahic Jump Location
Fig. 12

Modeling schematics for the three solar reactor concepts [91]: (a) indirectly irradiated packed-bed, (b) directly irradiated vortex-flow, and (c) indirectly irradiated entrained flow. (Reproduced with permission from the Royal Society of Chemistry.)

Grahic Jump Location
Fig. 13

Schematic of a solar chemical reactor for thermochemical dissociation of ZnO [21]: (a) reactor components: (1) rotating cavity lined with sintered ZnO tiles, (2) 80%Al2O3-20%SiO2 insulation, (3) 95%Al2O3-5%Y2O3 CMC, (4) alumina fibers, (5) Al reactor mantle, (6) aperture, (7) quartz window, (8) dynamic feeder, (9) conical frustum, (10) rotary joint; (b) cross section of the solar chemical reactor. Indicated are the locations of temperature measurements with type-B (B) and type-K (K) thermocouples. (Reproduced with permission from Elsevier.)

Grahic Jump Location
Fig. 14

Measured (solid curves) and computed (dashed curves) temperatures halfway along the reactor cavity at locations TB,1, TB,2, TK,1, TK,2 (see locations in Fig. 13(b)), measured radiation power input Psolar, and numerically calculated ZnO-dissociation rate as a function of time for a set of four experimental runs with (a) 3, (b) 5, (c) 7, and (d) 9 feed-cycles [21]. The top arrows point out to the times when the batch feeding of ZnO took place. (Reproduced with permission from Elsevier.)

Grahic Jump Location
Fig. 15

(a) The error fraction of the response of the alumina-sheathed Pt/Pt-Rh thermocouple probe to a step change in temperature in a highly radiative (IR) environment. The first-order time constant is extracted from the linear regression. (b) The uncorrected (T) and corrected (Tc) temperature of the solid powder during rapid heating and cooling cycles, demonstrating the importance of correcting for the sluggish response of the temperature probe.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In