0
Research Papers

Trends and Opportunities in Direct-Absorption Solar Thermal Collectors

[+] Author and Article Information
Patrick Phelan

School for Engineering of Matter,
Transport & Energy,
Arizona State University,
501 E. Tyler Mall, ECG 303,
Tempe, AZ 85287-6106
e-mail: phelan@asu.edu

Todd Otanicar

Mechanical Engineering Department,
University of Tulsa,
800 South Tucker Drive,
Tulsa, OK 74104-3189
e-mail: todd-otanicar@utulsa.edu

Robert Taylor

School of Mechanical and Manufacturing Engineering,
University of New South Wales,
UNSW Sydney, NSW 2052, Australia
e-mail: Robert.Taylor@UNSW.edu.au

Himanshu Tyagi

School of Mechanical, Materials & Energy Engineering,
Indian Institute of Technology Ropar,
Nangal Road,
Rupnagar-140001 (Punjab), India
e-mail: himanshu.tyagi@iitrpr.ac.in

Manuscript received October 3, 2012; final manuscript received February 26, 2013; published online May 17, 2013. Assoc. Editor: Srinath V. Ekkad.

J. Thermal Sci. Eng. Appl 5(2), 021003 (May 17, 2013) (9 pages) Paper No: TSEA-12-1166; doi: 10.1115/1.4023930 History: Received October 03, 2012; Revised February 26, 2013

Efficient conversion of sunlight into useful heat or work is of increasing global interest. Solar-to-thermal energy conversion, as opposed to solar-to-electricity, is enabled by solar thermal collectors that convert sunlight into heat at some useful temperature. We review here recent developments in solar thermal energy conversion. Our emphasis is on “direct-absorption” solar thermal collectors, in which incident sunlight is absorbed directly by a working fluid. This contrasts with conventional solar thermal collectors where the sunlight strikes and is absorbed by a solid receiver, which then transfers heat to the working fluid. Both liquid-based and gas-based direct-absorption collectors are described, although liquid-based systems are emphasized. We propose that if “direct-absorption” technologies could be developed further, it would open up a number of emerging opportunities, including applications exploiting thermochemical and photocatalytic reactions and direct absorption of a binary fluid for absorption refrigeration.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

IEA, 2012, “Technology Roadmap: Solar Heating and Cooling,” http://www.iea.org/publications/freepublications/publication/name,28277,en.html
IEA, 2010, “Technology Roadmap Concentrating Solar Power,” http://www.iea.org/papers/2010/csp_roadmap.pdf
Arvizu, D., Balaya, P., Cabeza, L., Hollands, T., Jäger-Waldau, A., Kondo, M., Konseibo, C., Meleshko, V., Stein, W., Tamaura, Y., Xu, H., and Zilles, R., 2011, “Direct Solar Energy,” IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambridge University, Cambridge, UK.
Duffie, J. A., and Beckman, W. A., 2006, Solar Engineering of Thermal Processes, Wiley, New York.
Yogev, A., 2004, “Solar Energy System With Direct Absorption of Solar Radiation,” U.S. Patent No. 6,776,154.
Goldman, A., Meitav, R., Yakupov, R., Krozier, I., Kokotov, Y., and Gilon, Y., 2010, “High Temperature Solar Receiver,” U.S. Patent No. 7,690,377.
Parker, R. Z., and Langhoff, P. W., 1993, “Fluid Absorption Receiver for Solar Radiation,” U.S. Patent No. 5,182,912.
Kraus, R. A., and Kraus, E. J., 1977, “Solar Thermal-Radiation, Absorption and Conversion System,” U.S. Patent No. 4,055,948.
Hunt, A. J., 1979, “A New Solar Thermal Receiver Utilizing a Small Particle Heat Exchanger,” Proceedings of the 13th Intersociety Energy Conversion Engineering Conference, Boston, MA.
Abdelrahman, M., Fumeaux, P., and Suter, P., 1979, “Study of Solid-Gas-Suspensions Used for Direct Absorption of Concentrated Solar Radiation,” Sol. Energy, 22(1), pp. 45–48. [CrossRef]
Bohn, M. S., 1987, “Experimental Investigation of the Direct Absorption Receiver Concept,” Energy, 12(3–4), pp. 227–233. [CrossRef]
Hirsch, D., and Steinfeld, A., 2004, “Solar Hydrogen Production by Thermal Decomposition of Natural Gas Using a Vortex-Flow Reactor,” Int. J. Hydrogen Energy, 29(1), pp. 47–55. [CrossRef]
Schunk, L. O., Haeberling, P., Wepf, S., Wuillemin, D., Meier, A., and Steinfeld, A., 2008, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” ASME J. Sol. Energy Eng., 130(2), p. 021009. [CrossRef]
Tyagi, H., Phelan, P., and Prasher, R., 2009, “Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector,” ASME J. Sol. Energy Eng., 131(4), p. 041004. [CrossRef]
Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G., and Taylor, R. A., 2010, “Nanofluid-Based Direct Absorption Solar Collector,” J. Renewable Sustainable Energy, 2(3), p. 033102. [CrossRef]
Sani, E., Barison, S., Pagura, C., Mercatelli, L., Sansoni, P., Fontani, D., Jafrancesco, D., and Francini, F., 2010, “Carbon Nanohorns-Based Nanofluids as Direct Sunlight Absorbers,” Opt. Express, 18(5), pp. 4613–4616. [CrossRef]
Taylor, R. A., Phelan, P. E., Otanicar, T. P., Walker, C. A., Nguyen, M., Trimble, S., and Prasher, R., 2011, “Applicability of Nanofluids in High Flux Solar Collectors,” J. Renewable Sustainable Energy, 3(2), p. 023104. [CrossRef]
Lu, L., Liu, Z.-H., and Xiao, H.-S., 2011, “Thermal Performance of an Open Thermosyphon Using Nanofluids for High-Temperature Evacuated Tubular Solar Collectors,” Sol. Energy, 85(2), pp. 379–387. [CrossRef]
Lenert, A., and Wang, E. N., 2012, “Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion,” Sol. Energy, 86, pp. 253–265. [CrossRef]
Han, Z. H., and Yang, B., 2008, “Thermophysical Characteristics of Water-In-FC72 Nanoemulsion Fluids,” Appl. Phys. Lett., 92(1), p. 013118. [CrossRef]
Taylor, R. A., Phelan, P. E., Otanicar, T. P., Walker, C. A., Nguyen, M., Trimble, S., and Prasher, R., 2011, “Applicability of Nanofluids in High Flux Solar Collectors,” J. Renewable Sustainable Energy, 3(2), p. 023104. [CrossRef]
Taylor, R. A., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prasher, R., and Tyagi, H., 2013, “Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids,” J. Appl. Phys., 113, p. 011301. [CrossRef]
Han, D., Meng, Z., Wu, D., Zhang, C., and Zhu, H., 2011, “Thermal Properties of Carbon Black Aqueous Nanofluids for Solar Absorption,” Nanoscale Res. Lett., 6(1), p. 457. [CrossRef]
Sani, E., Mercatelli, L., Barison, S., Pagura, C., Agresti, F., Colla, L., and Sansoni, P., 2011, “Potential of Carbon Nanohorn-Based Suspensions for Solar Thermal Collectors,” Sol. Energy Mater. Sol. Cells, 95(11), pp. 2994–3000. [CrossRef]
Yousefi, T., Shojaeizadeh, E., Veysi, F., and Zinadini, S., 2012, “An Experimental Investigation on the Effect of pH Variation of MWCNT–H2O Nanofluid on the Efficiency of a Flat-Plate Solar Collector,” Sol. Energy, 86(2), pp. 771–779. [CrossRef]
Kameya, Y., and Hanamura, K., 2011, “Enhancement of Solar Radiation Absorption Using Nanoparticle Suspension,” Sol. Energy, 85(2), pp. 299–307. [CrossRef]
Taylor, R. A., Phelan, P. E., Otanicar, T. P., Adrian, R., and Prasher, R., 2011, “Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors,” Nanoscale Res. Lett., 6(1), p. 225. [CrossRef]
Natarajan, E., and Sathish, R., 2009, “Role of Nanofluids in Solar Water Heater,” Int. J. Adv. Manuf. Technol., 1, pp. 3–7. [CrossRef]
Yousefi, T., Veysi, F., Shojaeizadeh, E., and Zinadini, S., 2012, “An Experimental Investigation on the Effect of Al2O3–H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors,” Renewable Energy, 39(1), pp. 293–298. [CrossRef]
Sani, E., Mercatelli, L., Zaccanti, G., Martelli, F., Di Ninni, P., Barison, S., Pagura, C., Giannini, A., Jafrancesco, D., Fontani, D., and Francini, F., 2011, “Optical Characterisation of Carbon-Nanohorn Based Nanofluids for Solar Energy and Life Science Applications,” Proceedings of the European Conference on Lasers and Electro-Optics (CLEO/Europe). [CrossRef]
Saidur, R., Meng, T. C., Said, Z., Hasanuzzaman, M., and Kamyar, A., 2012, “Evaluation of the Effect of Nanofluid-Based Absorbers on Direct Solar Collector,” Int. J. Heat Mass Transfer, 55(21–22), pp. 5899–5907. [CrossRef]
Otanicar, T. P., Phelan, P. E., Taylor, R. A., and Tyagi, H., 2011, “Spatially Varying Extinction Coefficient for Direct Absorption Solar Thermal Collector Optimization,” ASME J. Sol. Energy Eng., 133(2), p. 024501. [CrossRef]
Garcia, G., Buonsanti, R., Runnerstrom, E. L., Mendelsberg, R. J., Llordes, A., Anders, A., Richardson, T. J., and Milliron, D. J., 2011, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett., 11(10), pp. 4415–4420. [CrossRef] [PubMed]
Beydoun, D., Amal, R., Low, G., and McEvoy, S., 1999, “Role of Nanoparticles in Photocatalysis,” J. Nanopart. Res., 1, pp. 439–458. [CrossRef]
Mercatelli, L., Sani, E., Zaccanti, G., Martelli, F., Di Ninni, P., Barison, S., Pagura, C., Agresti, F., and Jafrancesco, D., 2011, “Absorption and Scattering Properties of Carbon Nanohorn-Based Nanofluids for Direct Sunlight Absorbers,” Nanoscale Res. Lett., 6(1), p. 282. [CrossRef]
Otanicar, T. P., Chowdhury, I., Prasher, R., and Phelan, P. E., 2011, “Band-Gap Tuned Direct Absorption for a Hybrid Concentrating Solar Photovoltaic/Thermal System,” ASME J. Sol. Energy Eng., 133(4), p. 041014. [CrossRef]
Otanicar, T. P., Phelan, P. E., and Golden, J. S., 2009, “Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems,” Sol. Energy, 83(7), pp. 969–977. [CrossRef]
Lv, W., Otanicar, T. P., Phelan, P. E., Dai, L., Taylor, R. A., and Swaminathan, R., 2012, “Surface Plasmon Resonance Shifts of a Dispersion of Core-Shell Nanoparticles for Efficient Solar Absorption,” Proceedings of the Micro/Nanoscale Heat & Mass Transfer International Conference, ASME, Atlanta, GA.
Otanicar, T. P., and Golden, J. S., 2009, “Comparative Environmental and Economic Analysis of Conventional and Nanofluid Solar Hot Water Technologies,” Environ. Sci. Technol., 43(15), pp. 6082–6087. [CrossRef] [PubMed]
Otanicar, T. P., Taylor, R. A., Phelan, P. E., and Prasher, R. S., 2009, “Impact of Size and Scattering Mode on the Optimal Solar Absorbing Nanofluid,” Proceedings of the ASME 2009 3rd International Conference of Energy Sustainability, ASME, San Francisco, CA, pp. 791–796. [CrossRef]
Taylor, R. A., Phelan, P. E., Otanicar, T., Adrian, R. J., and Prasher, R. S., 2009, “Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser,” Appl. Phys. Lett., 95(16), p. 161907. [CrossRef]
Arancibia-Bulnes, C. A., Bandala, E. R., and Estrada, C. A., 2002, “Radiation Absorption and Rate Constants for Carbaryl Photocatalytic Degradation in a Solar Collector,” Cat. Tod., 76, pp. 149–159. [CrossRef]
Jorgensen, G., Schissel, P., and Burrows, R., 1986, “Optical Properties of High-Temperature Materials for Direct Absorption Receivers,” Sol. Energy Mater., 14, pp. 385–394. [CrossRef]
Otanicar, T. P., 2009, “Direct Absorption Solar Thermal Collectors Utilizing Liquid-Nanoparticle Suspensions,” Ph.D. thesis, Arizona State University, Tempe, AZ.
Bohn, M. S., and Wang, K. Y., 1988, “Experiments and Analysis on the Molten Salt Direct Absorption Receiver Concept,” ASME J. Sol. Energy Eng., 110(1), pp. 45–51. [CrossRef]
Sasse, C., and Ingel, G., 1993, “The Role of the Optical Properties of Solids in Solar Direct Absorption Process,” Sol. Energy Mater. Sol. Cells, 31(1), pp. 61–73. [CrossRef]
Bohn, M. S., and Green, H. J., 1989, “Heat Transfer in Molten Salt Direct Absorption Receivers,” Sol. Energy, 42(1), pp. 57–66. [CrossRef]
Lenert, A., Zuniga, Y. S. P., and Wang, E. N., 2010, “Nanofluid-Based Absorbers for High Temperature Direct Solar Collectors,” 14th International Heat Transfer Conference, Washington, DC, Aug. 8–13, ASME, Paper No. IHTC14-22208, pp. 499–508. [CrossRef]
Webb, B. W., and Viskanta, R., 1985, “Analysis of Heat Transfer and Solar Radiation Absorption in an Irradiated Thin, Falling Molten Salt Film,” ASME J. Sol. Energy Eng., 107(2), pp. 113–119. [CrossRef]
Griffin, J. W., Stahl, K. A., and Pettit, R. B., 1986, “Optical Properties of Solid Particle Receiver Materials,” Sol. Energy Mater., 14, pp. 395–416. [CrossRef]
Liu, Z., Hou, W., Pavaskar, P., Aykol, M., and Cronin, S. B., 2011, “Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination,” Nano Lett., 11(3), pp. 1111–1116. [CrossRef] [PubMed]
Drotning, W. D., 1977, “Optical Properties of Oxide Particles Suspended in a Molten Salt Heat Transfer Fluid,” Sol. Energy, 20, pp. 313–319. [CrossRef]
Miller, F. J., and Koenigsdorff, R. W., 2000, “Thermal Modeling of a Small-Particle Solar Central Receiver,” ASME J. Sol. Energy Eng., 122(1), pp. 23–29. [CrossRef]
Veeraragavan, A., Lenert, A., Yilbas, B., Al-Dini, S., and Wang, E. N., 2012, “Analytical Model for the Design of Volumetric Solar Flow Receivers,” Int. J. Heat Mass Transfer, 55(4), pp. 556–564. [CrossRef]
Hunt, A. J., 1978, Small Particle Heat Exchangers, Department of Energy, Lawrence Berkeley Laboratory, Energy and Environment Division, Berkeley, CA.
Karni, J., Kribus, A., Rubin, R., and Doron, P., 1998, “The ‘Porcupine’: A Novel High-Flux Absorber for Volumetric Solar Receivers,” ASME J. Sol. Energy Eng., 120(2), pp. 85–95. [CrossRef]
Bertocchi, R., Kribus, A., and Karni, J., 2004, “Experimentally Determined Optical Properties of a Polydisperse Carbon Black Cloud for a Solar Particle Receiver,” ASME J. Sol. Energy Eng., 126(3), pp. 833–841. [CrossRef]
Kumar, S., and Tien, C. L., 1990, “Dependent Absorption and Extinction of Radiation by Small Particles,” ASME J. Heat Transfer, 112(1), pp. 178–185. [CrossRef]
Tien, C. L., 1988, “Thermal Radiation in Packed and Fluidized Beds,” ASME J. Heat Transfer, 110(4b), pp. 1230–1242. [CrossRef]
Prasher, R., 2007, “Thermal Radiation in Dense Nano- and Microparticulate Media,” J. Appl. Phys., 102, p. 074316. [CrossRef]
Cengel, Y., and Boles, M., 2010, Thermodynamics: An Engineering Approach, McGraw-Hill, New York.
Solutia, 2012, “Therminol VP-1,” retrieved Sept. 25, 2012, www.therminol.com/pages/products/vp-1.asp
Taylor, R. A., Otanicar, T. P., and Rosengarten, G., 2012, “Nanofluid-Based Optical Filter Optimization for PV/T Systems,” Nature, 1(34), p. e34. [CrossRef]
Taylor, R. A., Otanicar, T. P., Herukerrupu, Y., Bremond, F., Rosengarten, G., Hawkes, E., Jiang, X., and Coulombe, S., 2013, “Feasibility of Nanofluid-Based Optical Filters,” Appl. Opt., 52(7), pp. 1413–1422. [CrossRef] [PubMed]
Blunden, S. J., and Chapman, A. H., 1982, “The Environmental Degradation of Organotin Compounds—A Review,” Environ. Technol. Lett., 3, pp. 267–277. [CrossRef]
Luo, Y.-R., 2007, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL.
Bradshaw, R. W., and Siegel, N. P., 2008, “Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems,” Proceedings of the ASME Energy Sustainability Conference (ES2008), Jacksonville, FL, pp. 631–637. [CrossRef]
Paratherm, 2012, “Heat Transfer Fluids,” retrieved Sept. 11, 2012, http://www.paratherm.com/heat-transfer-fluids/
Boerema, N., Morrison, G., Taylor, R., and Rosengarten, G., 2012, “Liquid Sodium Versus Hitec as a Heat Transfer Fluid in Solar Thermal Central Receiver Systems,” Sol. Energy, 86(9), pp. 2293–2305. [CrossRef]
Schiel, W. J., and Geyer, M. A., 1988, “Testing and External Sodium Receiver up to Heat Fluxes of 2.5 MW/m2: Results and Conclusions From the IEA-SSPS High Flux Experiment Conducted at the Central Receiver System of the Plataforma Solar de Almeria (Spain),” Sol. Energy, 41(3), pp. 255–265. [CrossRef]
Kilmas, P. C., Driver, R. B., and Chavez, J. M., 1991, “United States Department of Energy Solar Receiver Technology Development,” Sol. Energy Mater., 24, pp. 136–150. [CrossRef]
Tammen, B. J., 1984, “Liquid Metal Solar Power System,” U.S. Patent No. 4,454,865.
Fink, J. K., and Leibowitz, L., 1995, “Thermodynamic and Transport Properties of Sodium Liquid and Vapor,” Argonne National Laboratory, Argonne, IL, Report No. ANL/RE–95/2.
Codd, D. S., 2011, “Concentrated Solar Power on Demand,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
Kurosaki, Y., and Viskanta, R., 1978, “Heat Transfer in a Solar Radiation Absorbing Fluid Layer Flowing Over a Substrate,” Proceedings of the ASME Winter Annual Meeting, San Francisco, CA, Dec. 10–15, pp. 13–21.
Hssatani, M., Arai, N., and Bando, H., 1982, “Collection of Thermal Radiation by a Semitransparent Fluid Layer Flowing in an Open Channel,” Heat Transfer-Jpn. Res., 11(3), pp. 17–30.
Savvatimskiy, A. I., 2005, “Measurements of the Melting Point of Graphite and the Properties of Liquid Carbon (A Review for 1963–2003),” Carbon, 43(6), pp. 1115–1142. [CrossRef]
Coastal Chemical Co., 2011, “Hitec Solar Salts,” pp. 1–3, http://www.coal2nuclear.com/MSR%20-%20HITEC%20Heat%20Transfer%20Salt.pdf
Lovering, D. G., 1982, Molten Salt Technology, Plenum Press, New York.
Stern, K. H., 1972, “High Temperature Properties and Decomposition of Inorganic Salts Part 3. Nitrates and Nitrites,” J. Phys. Chem. Ref. Data, 1(3), pp. 747–772. [CrossRef]
Kenisarin, M. M., 2010, “High-Temperature Phase Change Materials for Thermal Energy Storage,” Renewable Sustainable Energy Rev., 14(3), pp. 955–970. [CrossRef]
Maag, G., Zanganeh, G., and Steinfeld, A., 2009, “Solar Thermal Cracking of Methane in a Particle-Flow Reactor for the Co-Production of Hydrogen and Carbon,” Int. J. Hydrogen Energy, 34(18), pp. 7676–7685. [CrossRef]
Maag, G., Lipiński, W., and Steinfeld, A., 2009, “Particle–Gas Reacting Flow Under Concentrated Solar Irradiation,” Int. J. Heat Mass Transfer, 52(21–22), pp. 4997–5004. [CrossRef]
Piatkowski, N., Wieckert, C., and Steinfeld, A., 2009, “Experimental Investigation of a Packed-Bed Solar Reactor for the Steam-Gasification of Carbonaceous Feedstocks,” Fuel Process. Technol., 90(3), pp. 360–366. [CrossRef]
Haussener, S., Hirsch, D., Perkins, C., Weimer, A., Lewandowski, A., and Steinfeld, A., 2009, “Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production,” ASME J. Sol. Energy Eng., 131(2), p. 024503. [CrossRef]
Steinfeld, A., and Schubnell, M., 1993, “Optimum Aperature Size and Operating Temperature of a Solar Cavity-Receiver,” Sol. Energy, 50(1), pp. 19–25. [CrossRef]
Kumar, S., and Tien, C. L., 1990, “Analysis of Combined Radiation and Convection in a Particulate-Laden Liquid Film,” ASME J. Sol. Energy Eng., 112(4), pp. 293–300. [CrossRef]
Howell, J. R., Siegel, R., and Pinar Menguc, M., 2011, Thermal Radiation Heat Transfer, CRC Press, Boca Raton, FL.
Bohren, C. F., and Huffman, D. R., 1998, Absorption and Scattering of Light by Small Particles, Wiley, New York.
Averitt, R. D., Westcott, S. L., and Halas, N. J., 1999, “Linear Optical Properties of Gold Nanoshells,” J. Opt. Soc. Am. B, 16(10), pp. 1824–1832. [CrossRef]
Taylor, R. A., Phelan, P. E., Otanicar, T., Prasher, R. S., and Phelan, B. E., 2012, “Socioeconomic Impacts of Heat Transfer Research,” Int. Commun. Heat Mass Transfer, 39(10), pp. 1467–1473. [CrossRef]
Taylor, R. A., Phelan, P. E., Adrian, R. J., Gunawan, A., and Otanicar, T. P., 2012, “Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids,” Int. J. Therm. Sci., 56, pp. 1–11. [CrossRef]
Kim, S. J., McKrell, T., Buongiorno, J., and Hu, L.-W., 2009, “Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids,” ASME J. Heat Transfer, 131(4), p. 043204. [CrossRef]
Park, S. D., Won Lee, S., Kang, S., Bang, I. C., Kim, J. H., Shin, H. S., Lee, D. W., and Won Lee, D., 2010, “Effects of Nanofluids Containing Graphene/Graphene-Oxide Nanosheets on Critical Heat Flux,” Appl. Phys. Lett., 97(2), p. 023103. [CrossRef]
Hegde, R., Rao, S. S., and Reddy, R. P., 2010, “Critical Heat Flux Enhancement in Pool Boiling Using Alumina Nanofluids,” Heat Transfer Asian Res., 39(5), pp. 323–331.
Wen, D., 2008, “Mechanisms of Thermal Nanofluids on Enhanced Critical Heat Flux (CHF),” Int. J. Heat Mass Transfer, 51(19–20), pp. 4958–4965. [CrossRef]
Kim, H., Ahn, H. S., and Kim, M. H., 2010, “On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids,” ASME J. Heat Transfer, 132(6), p. 061501. [CrossRef]
Kim, S., Bang, I., Buongiorno, J., and Hu, L., 2007, “Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux,” Int. J. Heat Mass Transfer, 50(19–20), pp. 4105–4116. [CrossRef]
Truong, B., Hu, L., Buongiorno, J., and McKrell, T., 2010, “Modification of Sandblasted Plate Heaters Using Nanofluids to Enhance Pool Boiling Critical Heat Flux,” Int. J. Heat Mass Transfer, 53(1–3), pp. 85–94. [CrossRef]
Merabia, S., Keblinski, P., Joly, L., Lewis, L. J., and Barrat, J., 2009, “Critical Heat Flux Around Strongly Heated Nanoparticles,” Phys. Rev. E, 79, p. 021404. [CrossRef]
Taylor, R. A., and Phelan, P. E., 2009, “Pool Boiling of Nanofluids: Comprehensive Review of Existing Data and Limited New Data,” Int. J. Heat Mass Transfer, 52(23–24), pp. 5339–5347. [CrossRef]
Matsumoto, M., and Tanaka, K., 2008, “Nano Bubble—Size Dependence of Surface Tension and Inside Pressure,” Fluid Dyn. Res., 40(7–8), pp. 546–553. [CrossRef]
Carey, V. P., 2007, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Taylor & Francis, London.
Zimmerman, R., Morrison, G., and Rosengarten, G., 2010, “A Microsolar Collector for Hydrogen Production by Methanol Reforming,” ASME J. Sol. Energy Eng., 132(1), p. 011005. [CrossRef]
Steinfeld, A., 2005, “Solar Thermochemical Production of Hydrogen—A Review,” Sol. Energy, 78(5), pp. 603–615. [CrossRef]
Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S. M., and Steinfeld, A., 2010, “High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria,” Science (N.Y.), 330(6012), pp. 1797–1801. [CrossRef]
Faghri, A., and Guo, Z., 2005, “Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling,” Int. J. Heat Mass Transfer, 48(19–20), pp. 3891–3920. [CrossRef]
Adleman, J. R., Boyd, D. A., Goodwin, D. G., and Psaltis, D., 2009, “Heterogenous Catalysis Mediated by Plasmon Heating,” Nano Lett., 9(12), pp. 4417–4423. [CrossRef] [PubMed]
Khullar, V., Tyagi, H., Phelan, P. E., Otanicar, T. P., Singh, H., and Taylor, R. A., 2012, “Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector,” ASME J. Nanotechnol. Eng. Med., 3(3), p. 031003. [CrossRef]
Khullar, V., and Tyagi, H., 2012, “A Study on Environmental Impact of Nanofluid-Based Concentrating Solar Water Heating System,” Int. J. Environ. Stud., 69(2), pp. 220–232. [CrossRef]
Bard, A. J., Heller, A., Bates, L. J., Garmire, E. M., Goldstein, A., and Kilby, J., 1991, Potential Applications of Concentrated Solar Photons, National Academy Press, Washington, DC.
Kubacka, A., Fernández-García, M., and Colón, G., 2012, “Advanced Nanoarchitectures for Solar Photocatalytic Applications,” Chem. Rev., 112(3), pp. 1555–1614. [CrossRef] [PubMed]
Liu, G., Hoivik, N., Wang, K., and Jakobsen, H., 2012, “Engineering TiO2 Nanomaterials for CO2 Conversion/Solar Fuels,” Sol. Energy Mater. Sol. Cells, 105, pp. 53–68. [CrossRef]
Wang, P., Huang, B., Dai, Y., and Whangbo, M.-H., 2012, “Plasmonic Photocatalysts: Harvesting Visible Light With Noble Metal Nanoparticles,” Phys. Chem. Chem. Phys., 14(28), pp. 9813–9825. [CrossRef] [PubMed]
Varghese, O. K., Paulose, M., Latempa, T. J., and Grimes, C. A., 2009, “High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels,” Nano Lett., 9(2), pp. 731–737. [CrossRef] [PubMed]
Roy, S. C., Varghese, O. K., Paulose, M., and Grimes, C. A., 2010, “Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons,” ACS Nano, 4(3), pp. 1259–1278. [CrossRef] [PubMed]
Traynor, A. J., and Jensen, R. J., 2002, “Direct Solar Reduction of CO2 to Fuel: First Prototype Results,” Ind. Eng. Chem. Res., 41, pp. 1935–1939. [CrossRef]
Szymanski, P., and El-Sayed, M. A., 2012, “Some Recent Developments in Photoelectrochemical Water Splitting Using Nanostructured TiO2: A Short Review,” Theor. Chem. Acc., 131(6), p. 1202. [CrossRef]
Linic, S., Christopher, P., and Ingram, D. B., 2011, “Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy,” Nature Mater., 10(12), pp. 911–921. [CrossRef]
Grzechulska, J., Hamerski, M., and Morawski, A. W., 2000, “Photocatalytic Decomposition of Oil in Water,” Water Res., 34(5), pp. 1638–1644. [CrossRef]
Ziolli, R. L., and Jardim, W. F., 2002, “Photocatalytic Decomposition of Seawater-Soluble Crude-Oil Fractions Using High Surface Area Colloid Nanoparticles of TiO2,” J. Photochem. Photobiol., A, 147, pp. 205–212. [CrossRef]
Vamathevan, V., Amal, R., Beydoun, D., Low, G., and McEvoy, S., 2002, “Photocatalytic Oxidation of Organics in Water Using Pure and Silver-Modified Titanium Dioxide Particles,” J. Photochem. Photobiol., A, 148(1–3), pp. 233–245. [CrossRef]
Nutt, M. O., Hughes, J. B., and Michael, S. W., 2005, “Designing Pd-on-Au Bimetallic Nanoparticle Catalysts for Trichloroethene Hydrodechlorination,” Environ. Sci. Technol., 39(5), pp. 1346–1353. [CrossRef] [PubMed]
Beydoun, D., Amal, R., Low, G. K.-C., and McEvoyS., 2000, “Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution,” J. Phys. Chem. B, 104(18), pp. 4387–4396. [CrossRef]
Fujishima, A., Rao, T. N., and Tryk, D. A., 2000, “Titanium Dioxide Photocatalysis,” J. Photochem. Photobiol. C, 1(1), pp. 1–21. [CrossRef]
Kim, D. S., and Infante Ferreira, C. A., 2008, “Solar Refrigeration Options—A State-of-the-Art Review,” Int. J. Refrig., 31(1), pp. 3–15. [CrossRef]
Otanicar, T., Taylor, R. A., and Phelan, P. E., 2012, “Prospects for Solar Cooling—An Economic and Environmental Assessment,” Solar Energy, 86(5), pp. 1287–1299. [CrossRef]
Ortega, N., García-Valladares, O., Best, R., and Gómez, V. H., 2008, “Two-Phase Flow Modelling of a Solar Concentrator Applied as Ammonia Vapor Generator in an Absorption Refrigerator,” Renewable Energy, 33(9), pp. 2064–2076. [CrossRef]
Aziz, W., Chaturvedi, S. K., and Kheireddine, A., 1999, “Thermodynamic Analysis of Two-Component, Two-Phase Flow in Solar Collectors With Application to a Direct-Expansion Solar-Assisted Heat Pump,” Energy, 24(3), pp. 247–259. [CrossRef]
Lee, J. K., Koo, J., Hong, H., and Kang, Y. T., 2010, “The Effects of Nanoparticles on Absorption Heat and Mass Transfer Performance in NH3/H2O Binary Nanofluids,” Int. J. Refrig., 33(2), pp. 269–275. [CrossRef]
Pang, C., Wu, W., Sheng, W., Zhang, H., and Kang, Y. T., 2012, “Mass Transfer Enhancement by Binary Nanofluids (NH3/H2O + Ag Nanoparticles) for Bubble Absorption Process,” Int. J. Refrig., 35(8), pp. 2240–2247. [CrossRef]
SolarIndia, 2008, “Jawaharlal Nehru National Solar Mission: Towards Building SOLAR INDIA.”

Figures

Grahic Jump Location
Fig. 1

Common base fluids used in heat transfer applications—most are transparent

Grahic Jump Location
Fig. 2

Techno-economic trends with temperature for direct-absorption systems, where ηcollection is collection efficiency and ηconversion is conversion efficiency

Grahic Jump Location
Fig. 3

Concept demonstrated by Adleman et al. [108] for reformation of ethanol

Grahic Jump Location
Fig. 4

Proposed concept using nanofluid for direct absorption of sunlight and subsequent reformation of ethanol

Grahic Jump Location
Fig. 5

Schematic of photocatalytic conversion of carbon dioxide into hydrocarbons using solar energy proposed by Varghese et al. [115] and Roy et al. [116]

Grahic Jump Location
Fig. 6

Proposed direct-absorption generator for absorption cooling

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In