Wilcox, D. C., 2006, *Turbulence Modeling for CFD*, 3rd ed., DCW Industries, Inc., La Canada, CA.

Sagaut, P., and Meneveau, C., 2006, *Large Eddy Simulation for Incompressible Flows: An Introduction*, Scientific Computation, Springer, Berlin.

Deardorff, J. W., 1970, “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers,” J. Fluid Mech., 41, pp. 453–480.

[CrossRef]Schumann, U., 1975, “Subgrid-Scale Model for Finite Difference Simulation of Turbulent Flows in Plane Channels and Annuli,” J. Comp. Phys., 18, pp. 376–404.

[CrossRef]Moin, P., and Kim, J., 1982, “Numerical Investigation of Turbulent Channel Flow,” J. Fluid Mech., 118, pp. 341–377.

[CrossRef]Leonard, A., 1975, “Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows,” Adv. Geophys.,
18
(A), pp. 237–248.

[CrossRef]Piomelli, U., Moin, P., and Ferziger, J. H., 1988, “Model Consistency in Large Eddy Simulation of Turbulent Channel Flow,” Phys. Fluids, 31, p. 1884.

[CrossRef]Lund, T., 2003, “The Use of Explicit Filters in Large Eddy Simulation,” Comp. Math. Appl., 46, pp. 603–616.

[CrossRef]Bose, S. T., Moin, P., and You, D., 2008, “Grid-Independent Large-Eddy Simulation Using Explicit Filtering,” Center for Turbulence Research, Annual Research Briefs.

Antonopoulos-Domis, M., 1981, “Large-Eddy Simulation of a Passive Scalar in Isotropic Turbulence,” J. Fluid Mech., 104, pp. 55–79.

[CrossRef]Rogallo, R. S., and Moin, P., 1984, “Numerical Simulation of Turbulent Flows,” Annu. Rev. Fluid Mech., 16, pp. 99–137.

[CrossRef]Ferziger, J. H., 1996, “Large Eddy Simulation, Simulation and Modelling of Turbulent Flows—Part III,” *ICASE/LaRC Series in Computational Science and Engineering*, T. B.Gatski, M. Y.Hussaini, and J. L.Lumley, eds., Oxford University Press, Oxford.

Lesieur, M., and Metais, O., 1990 “New Trends in Large-Eddy Simulations of Turbulence,” Annu. Rev. Fluid Mech., 28, pp. 45–82.

[CrossRef]Bardina, J., Ferziger, J. H., and Reynolds, W. C., 1983, “Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous, Incompressible, Turbulent Flows,” Mech. Eng. Dept., Stanford University, Report No. TF-19.

Domaradzki, J. A., and Loh, K.-C., 1999, “The Subgrid-Scale Estimation Model in the Physical Space Representation,” Phys. Fluids, 11(8), pp. 2330–2342.

[CrossRef]Smagorinksy, J., 1963, “General Circulation Experiments With the Primitive Equations. I. The Basic Experiment,” Mon. Weather Rev., 91, pp. 99–164.

[CrossRef]Lilly, D. K., 1967, “The Representation of Small-Scale Turbulence in Numerical Simulation Experiments,” Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, NY.

Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., 1991, “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A, 3, pp. 1760–1765.

[CrossRef]Lilly, D. K., 1992, “A Proposed Modification of the Germano Subgrid-Scale Closure Method,” Phys. Fluids A, 4, pp. 633–635.

[CrossRef]Ghosal, S., Lund, T. S., Moin, P., and Akselvoll, K., 1995, “A Dynamic Localization Model for Large-Eddy Simulation of Turbulent Flows,” J. Fluid Mech., 286, pp. 229–255.

[CrossRef]Meneveau, C., Lund, T. S., and Cabot, W. H., 1996, “A Lagrangian Dynamic Subgrid-Scale Model of Turbulence,” J. Fluid Mech., 319, pp. 353–385.

[CrossRef]Kim, W.-W., and Menon, S., 1995, “A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations,” 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9–12, Paper No. AIAA 95-0356.

Ducros, F., Nicoud, F., and Schonfeld, T., 1997, “Large-Eddy Simulation of Compressible Flows on Hybrid Meshes,” 11th Symposium on Turbulent Shear Flows, Grenoble, France.

Nicoud, F., Ducros, F., and Schönfeld, T., 1998, “Towards Direct and Large Eddy Simulations of Compressible Flows in Complex Geometries,” *Notes on Numerical Fluid Mechanics*, Vol. 64, R.Friedrich, and P.Bontoux, eds., Vieweg, Braunschweig, pp. 157–171.

Hughes, J. R. T., Oberai, A. A., and Mazzei, L., 2001, “Large Eddy Simulation of Turbulent Channel Flows by the Variational Multiscale Method,” Phys. Fluids, 13(6), pp. 1784–1798.

[CrossRef]Dubois, T., Jauberteau, F., and Temam, R., 1998, “Incremental Unknowns, Multilevel Methods and the Numerical Simulation of Turbulence,” Comput. Methods Appl. Mech. Eng., 159, pp. 123–189.

[CrossRef]Nicoud, F., and Ducros, F., 1999, “Subgrid-Scale Modelling Based on the Square of the Velocity Gradient Tensor,” Flow Turbulence Comb., 62, pp. 183–200.

[CrossRef]Vreman, A. W., 2004, “An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications,” Phys. Fluids, 16, p. 3670.

[CrossRef]Park, N., Lee, S., Lee, J., and Choi, H., 2006 “A Dynamic Subgrid-Scale Eddy Viscosity Model With a Global Model Coefficient,” Phys. Fluids, 18, p. 125109.

[CrossRef]You, D., and Moin, P., 2007, “A Dynamic Global-Coefficient Subgrid-Scale Eddy-Viscosity Model for Large Eddy Simulation in Complex Geometries,” Phys. Fluids, 19, p. 065110.

[CrossRef]You, D., and Moin, P., 2009, “A Dynamic Global-Coefficient Subgrid-Scale Model for Large-Eddy Simulation of Turbulent Shear Scalar Transport in Complex Geometries,” Phys. Fluids, 21, p. 045109.

[CrossRef]Chapman, D. R., 1979, “Computational Aerodynamics, Development and Outlook,” AIAA J., 17, pp. 1293–313.

[CrossRef]Spalart, P. R., Jou, W. H., Strelets, M., and Allmaras, S. R., 1997, “Comments on the Feasibility of LES for Wings and on a Hybrid RANS/LES Approach,” *Advances in DNS/LES*, Greyden Press, Columbus, OH, pp. 137–148.

Spalart, P., and Allmaras, S., 1994, “A One-Equation Turbulence Model for Aerodynamic Flows,” La Rech. Aerosp., 1, pp. 5–21.

StreletsM., 2001, “Detached Eddy Simulation of Massively Separated Flows,” 39th AIAA Aerospace Sciences Meeting and Exhibit, Paper No. AIAA 2001-0879.

Viswanathan, A. K., and Tafti, D. K., 2006, “Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Two-Pass Internal Cooling Duct,” Int. J. Heat Fluid Flow, 27(1), pp. 1–20.

[CrossRef]Viswanathan, A. K., and Tafti, D. K., 2007, “Capturing the Effects of Rotation in Sudden Expansion Ducts Using Detached Eddy Simulation,” AIAA J., 45(8), pp. 2100–2102.

[CrossRef]Balaras, E., and Benocci, C., 1994, “Subgrid-Scale Models in Finite-Difference Simulations of Complex Wall Bounded Flows,” AGARD CP 551, Neuilly-Sur-Seine, France, AGARD, pp. 2.1–2.5.

Balaras, E., Benocci, C., and Piomelli, U., 1996, “Two Layer Approximate Boundary Conditions for Large Eddy Simulations,” AIAA J., 34, pp. 1111–1119.

[CrossRef]Cabot, W., and Moin, P., 1999, “Approximate Wall Boundary Conditions in the Large Eddy Simulation of High Reynolds Number Flow,” Flow Turbulence Comb., 63, pp. 269–291.

[CrossRef]Wang, M., and Moin, P., 2002, “Dynamic Wall Modeling for Large Eddy Simulation of Complex Turbulent Flows,” Phys. Fluids, 14(7), pp. 2043–2051.

[CrossRef]Tessicini, F., Li, N., and Leschziner, M. A., 2007, “Large Eddy Simulation of Three-Dimensional Flow Around a Hill-Shaped Obstruction With a Zonal Near-Wall Approximation,” Int. J. Heat Fluid Flow, 28, pp. 894–908.

[CrossRef]Patil, S., and Tafti, D. K., 2012, “Wall Modeled Large Eddy Simulation of Complex High Reynolds Number Flows With Synthetic Inlet Turbulence,” Int. J. Heat Fluid Flow, 33(1), pp. 9–21.

[CrossRef]Kaltenbach, H., Fatica, M., Mittal, R., Lund, T. S., and Moin, P., 1999, “Study of Flow in a Planar Asymmetric Diffuser Using Large-Eddy Simulation,” J. Fluid Mech., 390, pp. 151–185.

[CrossRef]Sewall, E. A., and Tafti, D. K., 2006, “Large Eddy Simulation of Flow and Heat Transfer in the 180 deg Bend Region of a Stationary Gas Turbine Blade Ribbed Internal Cooling Duct,” ASME J. Turbomach., 128(4), pp. 763–771.

[CrossRef]Lund, T., Wu, X., and Squires, D., 1998, “Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations,” J. Comp. Phys., 140, pp. 233–258.

[CrossRef]Lee, S., Lele, S. K., and Moin, P., 1992, “Simulation of Spatially Evolving Turbulence and the Applicability of Taylor's Hypothesis in Compressible Flow,” Phys. Fluids A, 4(7), pp. 1521–1530.

[CrossRef]Kraichnan, R., 1970, “Diffusion by a Random Velocity Field,” Phys. Fluids, 13(1), pp. 22–31.

[CrossRef]Jarrin, N., Benhamadouche, S., Laurence, D., and Prosser, R., 2007, “A Synthetic-Eddy Method for Generating Inflow Conditions for Large-Eddy Simulations,” Int. J. Heat Fluid Flow, 27, pp. 585–593.

[CrossRef]Moin, P., Squires, K., Cabot, W., and Lee, S., 1991, “A Dynamic Sub-Grid-Scale Model for Compressible Turbulence and Scalar Transport,” Phys. Fluids A, 11, pp. 2746–2757.

[CrossRef]Tafti, D. K., 2001, “GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows,” Proceedings of the ASME Fluids Engineering Division (FED), ASME-IMECE, New York, Vol. 256, pp. 347–356.

Tafti, D. K., 2010, “Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries,” *Advances in Computational Fluid Dynamics and Heat Transfer* (Developments in Heat Transfer), R.Amano, and B.Sunden, eds., WIT, Southampton, UK.

Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W., 1985, *Numerical Grid Generation Foundations and Applications*, Elsevier Science, New York.

Najjar, F. M., and Tafti, D. K., 1996, “Study of Discrete Test Filters and Finite-Difference Approximations for the Dynamic Subgrid-Scale Stress Model,” Phys. Fluids, 8(4), pp. 1076–1088.

[CrossRef]Kays, W. M., “Turbulent Prandtl Number—Where Are We?,” ASME J. Heat Transfer, 116(2), pp. 284–295.

[CrossRef]Johnson, D. A., and King, L. S., 1985, “A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layer,” AIAA J., 23(11), pp. 1684–1692.

[CrossRef]Tafti, D. K., 1996, “Comparison of Some Upwind-Biased High-Order Formulations With a Second-Order Central Difference Scheme for Time Integration of the Incompressible Navier–Stokes Equations,” Comput. Fluids, 25(7), pp. 547–655.

[CrossRef]Tafti, D. K., 1995, “A Study of Krylov Methods for the Solution of the Pressure-Poisson Equation on the CM-5,” ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, Hilton Head, SC, Aug. 13–18, FED, Vol. 215, pp. 1–8.

Smith, B., Bjorstad, P., and Gropp, W., 1996, *Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations*, Cambridge University Press, New York.

Dryja, M., and Widlund, O. B., 1987, “An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions,” Technical Report 339, Courant Institute, New York University.

Wang, G., and Tafti, D. K., 1999, “Performance Enhancement on Microprocessors With Hierarchical Memory Systems for Solving Large Sparse Linear Systems,” Int. J. Supercomput. Appl. High Performance Comput., 13(1), pp. 63–79.

[CrossRef]Wang, G., and Tafti, D. K., 1998, “Uniprocessor Performance Enhancement by Additive Schwarz Preconditioners on Origin 2000,” Adv. Eng. Software, 29(3–6), pp. 425–431.

[CrossRef]Wang, G., and Tafti, D. K., 1998, “Parallel Performance of Additive Schwarz Preconditioners on Origin 2000,” Adv. Eng. Software, 29(3–6), pp. 433–439.

[CrossRef]Amritkar, A., Tafti, D. K., Liu, R., Kufrin, R., and Chapman, B., 2012, “OpenMP Parallelism for Fluid and Fluid-Particulate Systems,” Parallel Comput, 38, pp. 501–517.

[CrossRef]Elyyan, M. A., Rozati, A., and Tafti, D. K., 2008, “Investigation of Dimpled Fins for Heat Transfer Enhancement in Compact Heat Exchangers,” Int. J. Heat Mass Transfer, 51, pp. 2950–2966.

[CrossRef]Incropera, F. P., and DeWitt, D. P., 2002, *Fundamentals of Heat and Mass Transfer*, 5th ed., John Wiley and Sons, New York.

Ekkad, S. V., Han, J. C., and Du, H., 1998, “Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density,” ASME J. Turbomach., 120(4), pp. 799–807.

[CrossRef]Rozati, A., and Tafti, D. K., 2008, “Large-Eddy Simulation of Leading Edge Film Cooling,” Int. J. Heat Fluid Flow, 29, pp. 1–17.

[CrossRef]Rozati, A., and Tafti, D. K., 2008, “Effect of Coolant-Mainstream Blowing Ratio on Leading Edge Film Cooling Flow and Heat Transfer—LES Investigation,” Int. J. Heat Fluid Flow, 29, pp. 857–873.

[CrossRef]Sewall, E. A., Tafti, D. K., Thole, K. A., and Graham, A., 2006, “Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct,” Int. J. Heat Fluid Flow, 27(2), pp. 243–258.

[CrossRef]Tafti, D. K., 2005, “Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades,” Int. J Heat Fluid Flow, 26(1), pp. 92–104.

[CrossRef]Rau, G., Çakan, M., Moeller, D., and Arts, T., 1988, “The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,” ASME J. Turbomach., 120(2), pp. 368–375.

[CrossRef]Ooi, A., Iaccarino, G., Durbin, P. A., and Behnia, M., 2002, “Reynolds-Averaged Simulation of Flow and Heat Transfer in Ribbed Ducts,” Int. J. Heat Fluid Flow, 23, pp. 750–757.

[CrossRef]Han, J. C., Chandra, P. R., and Lau, S. C., 1988, “Local Heat/Mass Transfer Distributions Around Sharp 180 deg Turns in Two-Pass Smooth and Rib-Roughened Channels,” ASME J. Heat Transfer, 110(1), pp. 91–98.

[CrossRef]Liou, T. M., Tzeng, Y. Y., and Chen, C. C., 1999, “Fluid Flow in a 180 deg Sharp Turning Duct With Different Divider Thicknesses,” ASME J. Turbomach., 121(3), pp. 569–576.

[CrossRef]Wang, P., Bai, X., Wessman, M., and Klingmann, J., 2004, “Large Eddy Simulation and Experimental Studies of a Confined Turbulent Swirling Flow,” Phys. Fluids, 16(9), pp. 3306–3324.

[CrossRef]Patil, S., and Tafti, D. K., 2012, “Large-Eddy Simulation of Flow and Convective Heat Transfer in a Gas Turbine Can Combustor With Synthetic Inlet Turbulence,” ASME J. Eng. Gas Turbines Power, 134(7), p. 071503.

[CrossRef]Patil, S., Abraham, S., Tafti, D. K., Ekkad, S., Kim, Y., Dutta, P., Moon, H.-K., and Srinivasan, R., 2009, “Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor,” Proceedings of ASME Turbo Expo 2009, Orlando, FL, June 8–12, Paper No. GT2009-59377.

[CrossRef]